IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.03551.html

PELVE from a regulatory perspective

Author

Listed:
  • Christian Laudag'e
  • Jorn Sass

Abstract

Under Solvency II, the Value-at-Risk (VaR) is applied, although there is broad consensus that the Expected Shortfall (ES) constitutes a more appropriate measure. Moving towards ES would necessitate specifying the corresponding ES level. The recently introduced Probability Equivalent Level of VaR and ES (PELVE) determines this by requiring that ES equals the prescribed VaR for a given future payoff, reflecting the situation of an individual insurer. We incorporate the regulator's perspective by proposing PELVE-inspired methods for multiple insurers. We analyze existence and uniqueness of the resulting ES levels, derive expressions for elliptically distributed payoffs and establish limit results for multivariate regularly distributed payoffs. A case study highlights that the choice of method is crucial when payoffs arise from different distribution families. Moreover, we recommend specific methods.

Suggested Citation

  • Christian Laudag'e & Jorn Sass, 2025. "PELVE from a regulatory perspective," Papers 2511.03551, arXiv.org.
  • Handle: RePEc:arx:papers:2511.03551
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.03551
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    2. Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
    3. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    4. Paul Embrechts & Alexander Schied & Ruodu Wang, 2022. "Robustness in the Optimization of Risk Measures," Operations Research, INFORMS, vol. 70(1), pages 95-110, January.
    5. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    6. Laudagé, Christian & Sass, Jörn & Wenzel, Jörg, 2022. "Combining multi-asset and intrinsic risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 254-269.
    7. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    8. Koch-Medina, Pablo & Munari, Cosimo, 2016. "Unexpected shortfalls of Expected Shortfall: Extreme default profiles and regulatory arbitrage," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 141-151.
    9. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    10. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    11. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2024. "Calibrating Distribution Models from PELVE," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(2), pages 373-406, April.
    12. Francesca Biagini & Jean‐Pierre Fouque & Marco Frittelli & Thilo Meyer‐Brandis, 2019. "A unified approach to systemic risk measures via acceptance sets," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 329-367, January.
    13. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    2. Xia Han & Liyuan Lin & Mengshi Zhao, 2025. "Empirical estimator of diversification quotient," Papers 2506.20385, arXiv.org, revised Oct 2025.
    3. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    4. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    5. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    6. George Tzagkarakis & Frantz Maurer, 2020. "An energy-based measure for long-run horizon risk quantification," Annals of Operations Research, Springer, vol. 289(2), pages 363-390, June.
    7. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    8. Xia Han & Liyuan Lin & Hao Wang & Ruodu Wang, 2024. "Diversification quotient based on expectiles," Papers 2411.14646, arXiv.org, revised Nov 2024.
    9. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    10. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    11. Matteo Burzoni & Cosimo Munari & Ruodu Wang, 2020. "Adjusted Expected Shortfall," Papers 2007.08829, arXiv.org, revised Aug 2021.
    12. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    13. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    14. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    15. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    16. Tolulope Fadina & Yang Liu & Ruodu Wang, 2024. "A framework for measures of risk under uncertainty," Finance and Stochastics, Springer, vol. 28(2), pages 363-390, April.
    17. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
    18. Mario Ghossoub & Jesse Hall & David Saunders, 2020. "Maximum Spectral Measures of Risk with given Risk Factor Marginal Distributions," Papers 2010.14673, arXiv.org.
    19. Niushan Gao & Denny H. Leung & Cosimo Munari & Foivos Xanthos, 2017. "Fatou Property, representations, and extensions of law-invariant risk measures on general Orlicz spaces," Papers 1701.05967, arXiv.org, revised Sep 2017.
    20. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.03551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.