IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.10527.html
   My bibliography  Save this paper

Denoised IPW-Lasso for Heterogeneous Treatment Effect Estimation in Randomized Experiments

Author

Listed:
  • Mingqian Guan
  • Komei Fujita
  • Naoya Sueishi
  • Shota Yasui

Abstract

This paper proposes a new method for estimating conditional average treatment effects (CATE) in randomized experiments. We adopt inverse probability weighting (IPW) for identification; however, IPW-transformed outcomes are known to be noisy, even when true propensity scores are used. To address this issue, we introduce a noise reduction procedure and estimate a linear CATE model using Lasso, achieving both accuracy and interpretability. We theoretically show that denoising reduces the prediction error of the Lasso. The method is particularly effective when treatment effects are small relative to the variability of outcomes, which is often the case in empirical applications. Applications to the Get-Out-the-Vote dataset and Criteo Uplift Modeling dataset demonstrate that our method outperforms fully nonparametric machine learning methods in identifying individuals with higher treatment effects. Moreover, our method uncovers informative heterogeneity patterns that are consistent with previous empirical findings.

Suggested Citation

  • Mingqian Guan & Komei Fujita & Naoya Sueishi & Shota Yasui, 2025. "Denoised IPW-Lasso for Heterogeneous Treatment Effect Estimation in Randomized Experiments," Papers 2510.10527, arXiv.org.
  • Handle: RePEc:arx:papers:2510.10527
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.10527
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    3. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    4. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    5. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    6. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    7. Kushal S. Shah & Haoda Fu & Michael R. Kosorok, 2023. "Stabilized direct learning for efficient estimation of individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(4), pages 2843-2856, December.
    8. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brandon K. Bellows & Yue Zhang & Zugui Zhang & Paul Kolm & William S. Weintraub & Andrew S. Moran & Jincheng Shen, 2022. "An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest," Papers 2204.10971, arXiv.org.
    9. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    11. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    12. Peng Wu & Donglin Zeng & Haoda Fu & Yuanjia Wang, 2020. "On using electronic health records to improve optimal treatment rules in randomized trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1075-1086, December.
    13. Buhl-Wiggers, Julie & Kerwin, Jason T. & Muñoz-Morales, Juan & Smith, Jeffrey & Thornton, Rebecca, 2024. "Some children left behind: Variation in the effects of an educational intervention," Journal of Econometrics, Elsevier, vol. 243(1).
    14. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    15. Engel, Christoph, 2020. "Estimating heterogeneous reactions to experimental treatments," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 124-147.
    16. O'Neill, E. & Weeks, M., 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Cambridge Working Papers in Economics 1865, Faculty of Economics, University of Cambridge.
    17. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.
    18. Adam Ciarleglio & Eva Petkova & Todd Ogden & Thaddeus Tarpey, 2018. "Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1331-1356, November.
    19. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    20. Boyi Guo & Hannah D. Holscher & Loretta S. Auvil & Michael E. Welge & Colleen B. Bushell & Janet A. Novotny & David J. Baer & Nicholas A. Burd & Naiman A. Khan & Ruoqing Zhu, 2023. "Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 545-561, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.10527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.