IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.05702.html
   My bibliography  Save this paper

Uncovering Representation Bias for Investment Decisions in Open-Source Large Language Models

Author

Listed:
  • Fabrizio Dimino
  • Krati Saxena
  • Bhaskarjit Sarmah
  • Stefano Pasquali

Abstract

Large Language Models are increasingly adopted in financial applications to support investment workflows. However, prior studies have seldom examined how these models reflect biases related to firm size, sector, or financial characteristics, which can significantly impact decision-making. This paper addresses this gap by focusing on representation bias in open-source Qwen models. We propose a balanced round-robin prompting method over approximately 150 U.S. equities, applying constrained decoding and token-logit aggregation to derive firm-level confidence scores across financial contexts. Using statistical tests and variance analysis, we find that firm size and valuation consistently increase model confidence, while risk factors tend to decrease it. Confidence varies significantly across sectors, with the Technology sector showing the greatest variability. When models are prompted for specific financial categories, their confidence rankings best align with fundamental data, moderately with technical signals, and least with growth indicators. These results highlight representation bias in Qwen models and motivate sector-aware calibration and category-conditioned evaluation protocols for safe and fair financial LLM deployment.

Suggested Citation

  • Fabrizio Dimino & Krati Saxena & Bhaskarjit Sarmah & Stefano Pasquali, 2025. "Uncovering Representation Bias for Investment Decisions in Open-Source Large Language Models," Papers 2510.05702, arXiv.org.
  • Handle: RePEc:arx:papers:2510.05702
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.05702
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.05702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.