IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.20015.html
   My bibliography  Save this paper

Roughness Analysis of Realized Volatility and VIX through Randomized Kolmogorov-Smirnov Distribution

Author

Listed:
  • Sergio Bianchi
  • Daniele Angelini

Abstract

We introduce a novel distribution-based estimator for the Hurst parameter of log-volatility, leveraging the Kolmogorov-Smirnov statistic to assess the scaling behavior of entire distributions rather than individual moments. To address the temporal dependence of financial volatility, we propose a random permutation procedure that effectively removes serial correlation while preserving marginal distributions, enabling the rigorous application of the KS framework to dependent data. We establish the asymptotic variance of the estimator, useful for inference and confidence interval construction. From a computational standpoint, we show that derivative-free optimization methods, particularly Brent's method and the Nelder-Mead simplex, achieve substantial efficiency gains relative to grid search while maintaining estimation accuracy. Empirical analysis of the CBOE VIX index and the 5-minute realized volatility of the S&P 500 reveals a statistically significant hierarchy of roughness, with implied volatility smoother than realized volatility. Both measures, however, exhibit Hurst exponents well below one-half, reinforcing the rough volatility paradigm and highlighting the open challenge of disentangling local roughness from long-memory effects in fractional modeling.

Suggested Citation

  • Sergio Bianchi & Daniele Angelini, 2025. "Roughness Analysis of Realized Volatility and VIX through Randomized Kolmogorov-Smirnov Distribution," Papers 2509.20015, arXiv.org.
  • Handle: RePEc:arx:papers:2509.20015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.20015
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikkel Bennedsen & Asger Lunde & Mikko S Pakkanen, 2022. "Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [Multifactor Approximation of Rough Volatility Models]," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 961-1006.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    4. Sergio Bianchi & Daniele Angelini, 2025. "Fair Volatility: A Framework for Reconceptualizing Financial Risk," Papers 2509.18837, arXiv.org.
    5. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Wei, Fan & Dudley, Richard M., 2012. "Two-sample Dvoretzky–Kiefer–Wolfowitz inequalities," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 636-644.
    7. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    8. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    9. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    12. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    13. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    14. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    15. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    16. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    17. Bianchi, Sergio, 2004. "A new distribution-based test of self-similarity," MPRA Paper 16640, University Library of Munich, Germany.
    18. Coeurjolly, Jean-Francois, 2000. "Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i07).
    19. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and Heterogeneous Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 609-628, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François & Jayaraman, Sarath Kumar, 2025. "A general option pricing framework for affine fractionally integrated models," Journal of Banking & Finance, Elsevier, vol. 171(C).
    2. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).
    3. Tetsuya Takaishi, 2025. "Impact of the COVID-19 pandemic on the financial market efficiency of price returns, absolute returns, and volatility increment: Evidence from stock and cryptocurrency markets," Papers 2504.18960, arXiv.org.
    4. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    6. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Mar 2025.
    9. Rama Cont & Purba Das, 2024. "Rough Volatility: Fact or Artefact?," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 191-223, May.
    10. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
    12. Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    13. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    14. Hiremath, Gourishankar S & Bandi, Kamaiah, 2010. "Long Memory in Stock Market Volatility:Evidence from India," MPRA Paper 48519, University Library of Munich, Germany.
    15. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    16. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    17. Tim Bollerslev & Daniela Osterrieder & Natalia Sizova & George Tauchen, 2011. "Risk and Return: Long-Run Relationships, Fractional Cointegration, and Return Predictability," CREATES Research Papers 2011-51, Department of Economics and Business Economics, Aarhus University.
    18. Takuo Higashide & Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2021. "New Dataset for Forecasting Realized Volatility: Is the Tokyo Stock Exchange Co-Location Dataset Helpful for Expansion of the Heterogeneous Autoregressive Model in the Japanese Stock Market?," JRFM, MDPI, vol. 14(5), pages 1-18, May.
    19. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    20. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.20015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.