IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.20015.html
   My bibliography  Save this paper

Roughness Analysis of Realized Volatility and VIX through Randomized Kolmogorov-Smirnov Distribution

Author

Listed:
  • Sergio Bianchi
  • Daniele Angelini

Abstract

We introduce a novel distribution-based estimator for the Hurst parameter of log-volatility, leveraging the Kolmogorov-Smirnov statistic to assess the scaling behavior of entire distributions rather than individual moments. To address the temporal dependence of financial volatility, we propose a random permutation procedure that effectively removes serial correlation while preserving marginal distributions, enabling the rigorous application of the KS framework to dependent data. We establish the asymptotic variance of the estimator, useful for inference and confidence interval construction. From a computational standpoint, we show that derivative-free optimization methods, particularly Brent's method and the Nelder-Mead simplex, achieve substantial efficiency gains relative to grid search while maintaining estimation accuracy. Empirical analysis of the CBOE VIX index and the 5-minute realized volatility of the S&P 500 reveals a statistically significant hierarchy of roughness, with implied volatility smoother than realized volatility. Both measures, however, exhibit Hurst exponents well below one-half, reinforcing the rough volatility paradigm and highlighting the open challenge of disentangling local roughness from long-memory effects in fractional modeling.

Suggested Citation

  • Sergio Bianchi & Daniele Angelini, 2025. "Roughness Analysis of Realized Volatility and VIX through Randomized Kolmogorov-Smirnov Distribution," Papers 2509.20015, arXiv.org.
  • Handle: RePEc:arx:papers:2509.20015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.20015
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.20015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.