IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.03790.html
   My bibliography  Save this paper

Asymptotic universal moment matching properties of normal distributions

Author

Listed:
  • Xuan Liu

Abstract

Moment matching is an easy-to-implement and usually effective method to reduce variance of Monte Carlo simulation estimates. On the other hand, there is no guarantee that moment matching will always reduce simulation variance for general integration problems at least asymptotically, i.e. when the number of samples is large. We study the characterization of conditions on a given underlying distribution $X$ under which asymptotic variance reduction is guaranteed for a general integration problem $\mathbb{E}[f(X)]$ when moment matching techniques are applied. We show that a sufficient and necessary condition for such asymptotic variance reduction property is $X$ being a normal distribution. Moreover, when $X$ is a normal distribution, formulae for efficient estimation of simulation variance for (first and second order) moment matching Monte Carlo are obtained. These formulae allow estimations of simulation variance as by-products of the simulation process, in a way similar to variance estimations for plain Monte Carlo. Moreover, we propose non-linear moment matching schemes for any given continuous distribution such that asymptotic variance reduction is guaranteed.

Suggested Citation

  • Xuan Liu, 2025. "Asymptotic universal moment matching properties of normal distributions," Papers 2508.03790, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.03790
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.03790
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Reuven Y. Rubinstein & Gennady Samorodnitsky & Moshe Shaked, 1985. "Antithetic Variates, Multivariate Dependence and Simulation of Stochastic Systems," Management Science, INFORMS, vol. 31(1), pages 66-77, January.
    3. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    4. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    5. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    6. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    3. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    4. Tomáš Tichý, 2008. "Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování [Examination of selected improvement approaches to Monte Carlo simulation in option pricing]," Politická ekonomie, Prague University of Economics and Business, vol. 2008(6), pages 772-794.
    5. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    6. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    7. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    8. Zbigniew Palmowski & Tomasz Serafin, 2020. "A Note on Simulation Pricing of π -Options," Risks, MDPI, vol. 8(3), pages 1-19, August.
    9. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    10. Zbigniew Palmowski & Tomasz Serafin, 2020. "Note on simulation pricing of $\pi$-options," Papers 2007.02076, arXiv.org, revised Aug 2020.
    11. Axel Kind, 2005. "Pricing American-Style Options By Simulation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 19(1), pages 109-116, June.
    12. Daniel Wei-Chung Miao & Yung-Hsin Lee & Jr-Yan Wang, 2018. "Using forward Monte-Carlo simulation for the valuation of American barrier options," Annals of Operations Research, Springer, vol. 264(1), pages 339-366, May.
    13. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.
    14. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    15. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    16. Chuang-Chang Chang & Chueh-Yung Tsao, 2011. "Efficient and accurate quadratic approximation methods for pricing Asian strike options," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 729-748.
    17. Phelim P. Boyle & Adam W. Kolkiewicz & Ken Seng Tan, 2013. "Pricing Bermudan options using low-discrepancy mesh methods," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 841-860, May.
    18. Almeida, Caio & Pereira, Leonardo Tavares, 2016. "Pricing Options Embedded in Debentures with Credit Risk," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(1), March.
    19. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    20. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.03790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.