IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.03790.html
   My bibliography  Save this paper

Asymptotic universal moment matching properties of normal distributions

Author

Listed:
  • Xuan Liu

Abstract

Moment matching is an easy-to-implement and usually effective method to reduce variance of Monte Carlo simulation estimates. On the other hand, there is no guarantee that moment matching will always reduce simulation variance for general integration problems at least asymptotically, i.e. when the number of samples is large. We study the characterization of conditions on a given underlying distribution $X$ under which asymptotic variance reduction is guaranteed for a general integration problem $\mathbb{E}[f(X)]$ when moment matching techniques are applied. We show that a sufficient and necessary condition for such asymptotic variance reduction property is $X$ being a normal distribution. Moreover, when $X$ is a normal distribution, formulae for efficient estimation of simulation variance for (first and second order) moment matching Monte Carlo are obtained. These formulae allow estimations of simulation variance as by-products of the simulation process, in a way similar to variance estimations for plain Monte Carlo. Moreover, we propose non-linear moment matching schemes for any given continuous distribution such that asymptotic variance reduction is guaranteed.

Suggested Citation

  • Xuan Liu, 2025. "Asymptotic universal moment matching properties of normal distributions," Papers 2508.03790, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.03790
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.03790
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.03790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.