IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.20468.html
   My bibliography  Save this paper

Building crypto portfolios with agentic AI

Author

Listed:
  • Antonino Castelli
  • Paolo Giudici
  • Alessandro Piergallini

Abstract

The rapid growth of crypto markets has opened new opportunities for investors, but at the same time exposed them to high volatility. To address the challenge of managing dynamic portfolios in such an environment, this paper presents a practical application of a multi-agent system designed to autonomously construct and evaluate crypto-asset allocations. Using data on daily frequencies of the ten most capitalized cryptocurrencies from 2020 to 2025, we compare two automated investment strategies. These are a static equal weighting strategy and a rolling-window optimization strategy, both implemented to maximize the evaluation metrics of the Modern Portfolio Theory (MPT), such as Expected Return, Sharpe and Sortino ratios, while minimizing volatility. Each step of the process is handled by dedicated agents, integrated through a collaborative architecture in Crew AI. The results show that the dynamic optimization strategy achieves significantly better performance in terms of risk-adjusted returns, both in-sample and out-of-sample. This highlights the benefits of adaptive techniques in portfolio management, particularly in volatile markets such as cryptocurrency markets. The following methodology proposed also demonstrates how multi-agent systems can provide scalable, auditable, and flexible solutions in financial automation.

Suggested Citation

  • Antonino Castelli & Paolo Giudici & Alessandro Piergallini, 2025. "Building crypto portfolios with agentic AI," Papers 2507.20468, arXiv.org.
  • Handle: RePEc:arx:papers:2507.20468
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.20468
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    2. Chong Zhang & Xinyi Liu & Zhongmou Zhang & Mingyu Jin & Lingyao Li & Zhenting Wang & Wenyue Hua & Dong Shu & Suiyuan Zhu & Xiaobo Jin & Sujian Li & Mengnan Du & Yongfeng Zhang, 2024. "When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments," Papers 2407.18957, arXiv.org, revised Sep 2024.
    3. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2024. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    2. C. Monica Capra & Thomas J. Kniesner, 2025. "Daniel Kahneman’s underappreciated last published paper: Empirical implications for benefit-cost analysis and a chat session discussion with bots," Journal of Risk and Uncertainty, Springer, vol. 71(1), pages 29-51, August.
    3. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    4. Shu Wang & Zijun Yao & Shuhuai Zhang & Jianuo Gai & Tracy Xiao Liu & Songfa Zhong, 2025. "When Experimental Economics Meets Large Language Models: Evidence-based Tactics," Papers 2505.21371, arXiv.org, revised Jul 2025.
    5. Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
    6. repec:osf:osfxxx:udz28_v1 is not listed on IDEAS
    7. Hui Chen & Antoine Didisheim & Luciano Somoza & Hanqing Tian, 2025. "A Financial Brain Scan of the LLM," Papers 2508.21285, arXiv.org.
    8. Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766, arXiv.org, revised Aug 2024.
    9. Elif Akata & Lion Schulz & Julian Coda-Forno & Seong Joon Oh & Matthias Bethge & Eric Schulz, 2025. "Playing repeated games with large language models," Nature Human Behaviour, Nature, vol. 9(7), pages 1380-1390, July.
    10. Nir Chemaya & Daniel Martin, 2024. "Perceptions and detection of AI use in manuscript preparation for academic journals," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
    11. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    12. Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.
    13. repec:osf:osfxxx:r3qng_v1 is not listed on IDEAS
    14. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    15. Yuan Gao & Dokyun Lee & Gordon Burtch & Sina Fazelpour, 2024. "Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina," Papers 2410.19599, arXiv.org, revised Jan 2025.
    16. Umberto Collodel, 2025. "Interpreting the Interpreter: Can We Model post-ECB Conferences Volatility with LLM Agents?," Papers 2508.13635, arXiv.org, revised Oct 2025.
    17. Matthew O. Jackson & Qiaozhu Me & Stephanie W. Wang & Yutong Xie & Walter Yuan & Seth Benzell & Erik Brynjolfsson & Colin F. Camerer & James Evans & Brian Jabarian & Jon Kleinberg & Juanjuan Meng & Se, 2025. "AI Behavioral Science," Papers 2509.13323, arXiv.org.
    18. Jiaxin Liu & Yixuan Tang & Yi Yang & Kar Yan Tam, 2025. "Evaluating and Aligning Human Economic Risk Preferences in LLMs," Papers 2503.06646, arXiv.org, revised Sep 2025.
    19. George Gui & Seungwoo Kim, 2025. "Leveraging LLMs to Improve Experimental Design: A Generative Stratification Approach," Papers 2509.25709, arXiv.org.
    20. Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2023. "Integrating machine behavior into human subject experiments: A user-friendly toolkit and illustrations," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2024_01, Max Planck Institute for Research on Collective Goods.
    21. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    22. Ji Ma, 2025. "Computational Basis of LLM's Decision Making in Social Simulation," Papers 2504.11671, arXiv.org, revised Nov 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.20468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.