Author
Abstract
Financial time series forecasting presents significant challenges due to complex nonlinear relationships, temporal dependencies, variable interdependencies and limited data availability, particularly for tasks involving low-frequency data, newly listed instruments, or emerging market assets. Time Series Foundation Models (TSFMs) offer a promising solution through pretraining on diverse time series corpora followed by task-specific adaptation. This study evaluates two TSFMs (Tiny Time Mixers (TTM) and Chronos) across three financial forecasting tasks: US 10-year Treasury yield changes, EUR/USD volatility, and equity spread prediction. Results demonstrate that TTM exhibits strong transferability. When fine-tuning both the pretrained version of TTM and an untrained model with the same architecture, the pretrained version achieved 25-50% better performance when fine-tuned on limited data and 15-30% improvements even when fine-tuned on lengthier datasets. Notably, TTM's zero-shot performance outperformed naive benchmarks in volatility forecasting and equity spread prediction, with the latter demonstrating that TSFMs can surpass traditional benchmark models without fine-tuning. The pretrained model consistently required 3-10 fewer years of data to achieve comparable performance levels compared to the untrained model, demonstrating significant sample-efficiency gains. However, while TTM outperformed naive baselines, traditional specialised models matched or exceeded its performance in two of three tasks, suggesting TSFMs prioritise breadth over task-specific optimisation. These findings indicate that TSFMs, though still nascent, offer substantial promise for financial forecasting-particularly in noisy, data-constrained tasks-but achieving competitive performance likely requires domain-specific pretraining and architectural refinements tailored to financial time series characteristics.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.07296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.