IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06164.html
   My bibliography  Save this paper

Functional It\^o-formula and Taylor expansions for non-anticipative maps of c\`adl\`ag rough paths

Author

Listed:
  • Christa Cuchiero
  • Xin Guo
  • Francesca Primavera

Abstract

We derive a functional It\^o-formula for non-anticipative maps of rough paths, based on the approximation properties of the signature of c\`adl\`ag rough paths. This result is a functional extension of the It\^o-formula for c\`adl\`ag rough paths (by Friz and Zhang (2018)), which coincides with the change of variable formula formulated by Dupire (2009) whenever the functionals' representations, the notions of regularity, and the integration concepts can be matched. Unlike these previous works, we treat the vertical (jump) pertubation via the Marcus transformation, which allows for incorporating path functionals where the second order vertical derivatives do not commute, as is the case for typical signature functionals. As a byproduct, we show that sufficiently regular non-anticipative maps admit a functional Taylor expansion in terms of the path's signature, leading to an important generalization of the recent results by Dupire and Tissot-Daguette (2022).

Suggested Citation

  • Christa Cuchiero & Xin Guo & Francesca Primavera, 2025. "Functional It\^o-formula and Taylor expansions for non-anticipative maps of c\`adl\`ag rough paths," Papers 2504.06164, arXiv.org.
  • Handle: RePEc:arx:papers:2504.06164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06164
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruno Dupire & Valentin Tissot-Daguette, 2022. "Functional Expansions," Papers 2212.13628, arXiv.org, revised Mar 2023.
    2. Nicolas Perkowski & David J. Promel, 2013. "Pathwise stochastic integrals for model free finance," Papers 1311.6187, arXiv.org, revised Jun 2016.
    3. Keller, Christian & Zhang, Jianfeng, 2016. "Pathwise Itô calculus for rough paths and rough PDEs with path dependent coefficients," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 735-766.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    2. Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2021. "One-dimensional game-theoretic differential equations," Papers 2101.08041, arXiv.org.
    3. Vladimir Vovk & Glenn Shafer, 2017. "Towards a probability-free theory of continuous martingales," Papers 1703.08715, arXiv.org.
    4. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    5. Vladimir Vovk, 2016. "Another example of duality between game-theoretic and measure-theoretic probability," Papers 1608.02706, arXiv.org.
    6. Vladimir Vovk & Glenn Shafer, 2016. "A probability-free and continuous-time explanation of the equity premium and CAPM," Papers 1607.00830, arXiv.org.
    7. Vladimir Vovk, 2017. "The role of measurability in game-theoretic probability," Finance and Stochastics, Springer, vol. 21(3), pages 719-739, July.
    8. Lesiba Ch. Galane & Rafa{l} M. {L}ochowski & Farai J. Mhlanga, 2017. "On the quadratic variation of the model-free price paths with jumps," Papers 1710.07894, arXiv.org, revised May 2018.
    9. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    10. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    11. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    12. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    13. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    14. Vladimir Vovk, 2016. "Getting rich quick with the Axiom of Choice," Papers 1604.00596, arXiv.org, revised Mar 2017.
    15. John Armstrong & Andrei Ionescu, 2023. "Gamma Hedging and Rough Paths," Papers 2309.05054, arXiv.org, revised Mar 2024.
    16. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    17. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2022. "Universal approximation theorems for continuous functions of c\`adl\`ag paths and L\'evy-type signature models," Papers 2208.02293, arXiv.org, revised Aug 2023.
    18. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    19. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    20. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.