IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14158.html
   My bibliography  Save this paper

Capturing Smile Dynamics with the Quintic Volatility Model: SPX, Skew-Stickiness Ratio and VIX

Author

Listed:
  • Eduardo Abi Jaber

    (Xiaoyuan)

  • Shaun

    (Xiaoyuan)

  • Li

Abstract

We introduce the two-factor Quintic Ornstein-Uhlenbeck model, where volatility is modeled as a polynomial of degree five based on the sum of two Ornstein-Uhlenbeck processes driven by the same Brownian Motion, each mean-reverting at a different speed. We demonstrate that the Quintic model effectively captures the volatility surfaces of SPX and VIX while aligning with the skew-stickiness ratio (SSR) across maturities ranging from a few days to over two years. Furthermore, the Quintic model shows consistency with key empirical stylized facts, notably reproducing the Zumbach effect.

Suggested Citation

  • Eduardo Abi Jaber & Shaun & Li, 2025. "Capturing Smile Dynamics with the Quintic Volatility Model: SPX, Skew-Stickiness Ratio and VIX," Papers 2503.14158, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14158
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14158
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles Zumbach, 2009. "Time reversal invariance in finance," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 505-515.
    2. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    4. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    5. Pagès Gilles & Printems Jacques, 2003. "Optimal quadratic quantization for numerics: the Gaussian case," Monte Carlo Methods and Applications, De Gruyter, vol. 9(2), pages 135-165, April.
    6. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03902513, HAL.
    7. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org, revised Feb 2025.
    2. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    3. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    4. R'emy Chicheportiche, 2013. "Non-linear dependences in finance," Papers 1309.5073, arXiv.org.
    5. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    6. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    7. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    8. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    9. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    10. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    11. Wei-Ru Chen & A. Christian Silva & Shen-Ning Tung, 2024. "Stylized facts in Web3," Papers 2408.07653, arXiv.org, revised Dec 2024.
    12. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    13. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    14. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    15. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    16. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    17. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    18. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    19. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    20. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.