IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.12957.html
   My bibliography  Save this paper

A measure-valued HJB perspective on Bayesian optimal adaptive control

Author

Listed:
  • Alexander M. G. Cox
  • Sigrid Kallblad
  • Chaorui Wang

Abstract

We consider a Bayesian adaptive optimal stochastic control problem where a hidden static signal has a non-separable influence on the drift of a noisy observation. Being allowed to control the specific form of this dependence, we aim at optimising a cost functional depending on the posterior distribution of the hidden signal. Expressing the dynamics of this posterior distribution in the observation filtration, we embed our problem into a genuinely infinite-dimensional stochastic control problem featuring so-called measure-valued martingales. We address this problem by use of viscosity theory and approximation arguments. Specifically, we show equivalence to a corresponding weak formulation, characterise the optimal value of the problem in terms of the unique continuous viscosity solution of an associated HJB equation, and construct a piecewise constant and arbitrarily-close-to-optimal control to our main problem of study.

Suggested Citation

  • Alexander M. G. Cox & Sigrid Kallblad & Chaorui Wang, 2025. "A measure-valued HJB perspective on Bayesian optimal adaptive control," Papers 2502.12957, arXiv.org.
  • Handle: RePEc:arx:papers:2502.12957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.12957
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bandini, Elena & Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2019. "Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 674-711.
    2. Kunita, Hiroshi, 1971. "Asymptotic behavior of the nonlinear filtering errors of Markov processes," Journal of Multivariate Analysis, Elsevier, vol. 1(4), pages 365-393, December.
    3. Blount, Douglas & Kouritzin, Michael A., 2010. "On convergence determining and separating classes of functions," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1898-1907, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Jiao, 2009. "Multiple defaults and contagion risks," Working Papers hal-00441500, HAL.
    2. Moral, P. Del & Guionnet, A., 1998. "Large deviations for interacting particle systems: Applications to non-linear filtering," Stochastic Processes and their Applications, Elsevier, vol. 78(1), pages 69-95, October.
    3. Bandini, Elena & Calvia, Alessandro & Colaneri, Katia, 2022. "Stochastic filtering of a pure jump process with predictable jumps and path-dependent local characteristics," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 396-435.
    4. Budhiraja, A., 2001. "Ergodic properties of the nonlinear filter," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 1-24, September.
    5. Kouritzin, Michael A. & Lê, Khoa & Sezer, Deniz, 2019. "Laws of large numbers for supercritical branching Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3463-3498.
    6. Li, Liping & Li, Xiaodan, 2020. "Dirichlet forms and polymer models based on stable processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5940-5972.
    7. Ying Jiao, 2009. "Multiple defaults and contagion risks," Papers 0912.3132, arXiv.org.
    8. Beatris Adriana Escobedo-Trujillo & Javier Garrido-Meléndez & Gerardo Alcalá & J. D. Revuelta-Acosta, 2022. "Optimal Control with Partially Observed Regime Switching: Discounted and Average Payoffs," Mathematics, MDPI, vol. 10(12), pages 1-28, June.
    9. LeGland, François & Oudjane, Nadia, 2003. "A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals," Stochastic Processes and their Applications, Elsevier, vol. 106(2), pages 279-316, August.
    10. Alexander M. G. Cox & Sigrid Kallblad & Martin Larsson & Sara Svaluto-Ferro, 2021. "Controlled Measure-Valued Martingales: a Viscosity Solution Approach," Papers 2109.00064, arXiv.org, revised Aug 2023.
    11. Vitalii Konarovskyi & Victor Marx, 2023. "On Conditioning Brownian Particles to Coalesce," Journal of Theoretical Probability, Springer, vol. 36(4), pages 2126-2164, December.
    12. Budhiraja, A. & Ocone, D., 1999. "Exponential stability in discrete-time filtering for non-ergodic signals," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 245-257, August.
    13. Calvia, Alessandro & Ferrari, Giorgio, 2021. "Nonlinear Filtering of Partially Observed Systems Arising in Singular Stochastic Optimal Control," Center for Mathematical Economics Working Papers 651, Center for Mathematical Economics, Bielefeld University.
    14. Fuhrman, Marco & Morlais, Marie-Amélie, 2020. "Optimal switching problems with an infinite set of modes: An approach by randomization and constrained backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3120-3153.
    15. Deck, T., 2006. "Asymptotic properties of Bayes estimators for Gaussian Itô-processes with noisy observations," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 563-573, February.
    16. P. Del Moral & M. Ledoux, 2000. "Convergence of Empirical Processes for Interacting Particle Systems with Applications to Nonlinear Filtering," Journal of Theoretical Probability, Springer, vol. 13(1), pages 225-257, January.
    17. Martini, Mattia, 2023. "Kolmogorov equations on spaces of measures associated to nonlinear filtering processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 385-423.
    18. Peter Bank & Yan Dolinsky, 2023. "Optimal investment with a noisy signal of future stock prices," Papers 2302.10485, arXiv.org, revised Dec 2023.
    19. Papavasiliou, Anastasia, 2006. "Parameter estimation and asymptotic stability in stochastic filtering," Stochastic Processes and their Applications, Elsevier, vol. 116(7), pages 1048-1065, July.
    20. Kouritzin, Michael A. & Ren, Yan-Xia, 2014. "A strong law of large numbers for super-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 505-521.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.12957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.