Scenario Analysis with Multivariate Bayesian Machine Learning Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Regis Barnichon & Christian Matthes & Alexander Ziegenbein, 2022. "Are the Effects of Financial Market Disruptions Big or Small?," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 557-570, May.
- Joshua C. C. Chan, 2020.
"Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
- Joshua C.C. Chan, 2015. "Large Bayesian VARs: A flexible Kronecker error covariance structure," CAMA Working Papers 2015-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tony Chernis & Niko Hauzenberger & Haroon Mumtaz & Michael Pfarrhofer, 2025. "A Bayesian Gaussian Process Dynamic Factor Model," Papers 2509.04928, arXiv.org.
- Joshua C. C. Chan & Michael Pfarrhofer, 2025. "Large Bayesian VARs for Binary and Censored Variables," Papers 2506.01422, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-Type Adaptive Hierarchical Priors for Large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Thomas B Götz & Klemens Hauzenberger, 2021. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 442-461.
- Joshua C. C. Chan, 2024.
"BVARs and stochastic volatility,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67,
Edward Elgar Publishing.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Baruník, Jozef & Ellington, Michael, 2024.
"Persistence in financial connectedness and systemic risk,"
European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
- Jozef Barunik & Michael Ellington, 2020. "Persistence in Financial Connectedness and Systemic Risk," Papers 2007.07842, arXiv.org, revised Nov 2023.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022.
"Constructing Fan Charts from the Ragged Edge of SPF Forecasts,"
Working Papers
22-36, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Working Papers 2429, Banco de España.
- Clark, Todd E. & Ganics, Gergely & Mertens, Elmar, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Discussion Papers 38/2024, Deutsche Bundesbank.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36R, Federal Reserve Bank of Cleveland.
- Barbara Rossi, 2021.
"Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them,"
Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
- Joshua C. C. Chan, 2019. "Large Bayesian Vector Autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022.
"An automated prior robustness analysis in Bayesian model comparison,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "An Automated Prior Robustness Analysis in Bayesian Model Comparison," CAMA Working Papers 2019-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- repec:rim:rimwps:18-37 is not listed on IDEAS
- Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
- Klieber, Karin & Coulombe, Philippe Goulet, 2025. "Opening the black box of local projections," Working Paper Series 3105, European Central Bank.
- Florian Huber & Gary Koop, 2023.
"Subspace shrinkage in conjugate Bayesian vector autoregressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 556-576, June.
- Florian Huber & Gary Koop, 2021. "Subspace Shrinkage in Conjugate Bayesian Vector Autoregressions," Papers 2107.07804, arXiv.org.
- Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-03-17 (Big Data)
- NEP-ECM-2025-03-17 (Econometrics)
- NEP-RMG-2025-03-17 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.08440. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2502.08440.html