IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.08744.html
   My bibliography  Save this paper

No Tick-Size Too Small: A General Method for Modelling Small Tick Limit Order Books

Author

Listed:
  • Konark Jain
  • Jean-Franc{c}ois Muzy
  • Jonathan Kochems
  • Emmanuel Bacry

Abstract

Tick-sizes not only influence the granularity of the price formation process but also affect market agents' behavior. We investigate the disparity in the microstructural properties of the Limit Order Book (LOB) across a basket of assets with different relative tick-sizes. A key contribution of this study is the identification of several stylized facts, which are used to differentiate between large, medium, and small-tick assets, along with clear metrics for their measurement. We provide cross-asset visualizations to illustrate how these attributes vary with relative tick-size. Further, we propose a Hawkes Process model that {\color{black}not only fits well for large-tick assets, but also accounts for }sparsity, multi-tick level price moves, and the shape of the LOB in small-tick assets. Through simulation studies, we demonstrate the {\color{black} versatility} of the model and identify key variables that determine whether a simulated LOB resembles a large-tick or small-tick asset. Our tests show that stylized facts like sparsity, shape, and relative returns distribution can be smoothly transitioned from a large-tick to a small-tick asset using our model. We test this model's assumptions, showcase its challenges and propose questions for further directions in this area of research.

Suggested Citation

  • Konark Jain & Jean-Franc{c}ois Muzy & Jonathan Kochems & Emmanuel Bacry, 2024. "No Tick-Size Too Small: A General Method for Modelling Small Tick Limit Order Books," Papers 2410.08744, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2410.08744
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.08744
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel Bacry & Thibault Jaisson & Jean--François Muzy, 2016. "Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1179-1201, August.
    2. Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briola, Antonio & Bartolucci, Silvia & Aste, Tomaso, 2025. "HLOB–Information persistence and structure in limit order books," LSE Research Online Documents on Economics 126623, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Nov 2024.
    2. Jain, Konark & Firoozye, Nick & Kochems, Jonathan & Treleaven, Philip, 2024. "Limit Order Book dynamics and order size modelling using Compound Hawkes Process," Finance Research Letters, Elsevier, vol. 69(PA).
    3. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
    4. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    5. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    6. Francis Agana & Eben Maré, 2025. "Modelling Insurance Claims During Financial Crises: A Systemic Approach," JRFM, MDPI, vol. 18(6), pages 1-20, June.
    7. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    8. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    9. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    10. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    11. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    12. Abdul Rahman & Neelesh Upadhye, 2024. "Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading," Papers 2411.08382, arXiv.org.
    13. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    14. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    15. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    16. Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.
    17. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    18. Boubacar Maïnassara, Yacouba & Rabehasaina, Landy, 2025. "Estimation of subcritical Galton Watson processes with correlated immigration," Stochastic Processes and their Applications, Elsevier, vol. 184(C).
    19. Ruihua Ruan & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2023. "The self-exciting nature of the bid-ask spread dynamics," Papers 2303.02038, arXiv.org, revised Jun 2023.
    20. Philip Protter & Qianfan Wu & Shihao Yang, 2021. "Order Book Queue Hawkes-Markovian Modeling," Papers 2107.09629, arXiv.org, revised Jan 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.08744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.