IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.01007.html
   My bibliography  Save this paper

Municipal cyber risk modeling using cryptographic computing to inform cyber policymaking

Author

Listed:
  • Avital Baral
  • Taylor Reynolds
  • Lawrence Susskind
  • Daniel J. Weitzner
  • Angelina Wu

Abstract

Municipalities are vulnerable to cyberattacks with devastating consequences, but they lack key information to evaluate their own risk and compare their security posture to peers. Using data from 83 municipalities collected via a cryptographically secure computation platform about their security posture, incidents, security control failures, and losses, we build data-driven cyber risk models and cyber security benchmarks for municipalities. We produce benchmarks of the security posture in a sector, the frequency of cyber incidents, forecasted annual losses for organizations based on their defensive posture, and a weighting of cyber controls based on their individual failure rates and associated losses. Combined, these four items can help guide cyber policymaking by quantifying the cyber risk in a sector, identifying gaps that need to be addressed, prioritizing policy interventions, and tracking progress of those interventions over time. In the case of the municipalities, these newly derived risk measures highlight the need for continuous measured improvement of cybersecurity readiness, show clear areas of weakness and strength, and provide governments with some early targets for policy focus such as security education, incident response, and focusing efforts first on municipalities at the lowest security levels that have the highest risk reduction per security dollar invested.

Suggested Citation

  • Avital Baral & Taylor Reynolds & Lawrence Susskind & Daniel J. Weitzner & Angelina Wu, 2024. "Municipal cyber risk modeling using cryptographic computing to inform cyber policymaking," Papers 2402.01007, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2402.01007
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.01007
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arunabha Mukhopadhyay & Samir Chatterjee & Kallol K. Bagchi & Peteer J. Kirs & Girja K. Shukla, 2019. "Cyber Risk Assessment and Mitigation (CRAM) Framework Using Logit and Probit Models for Cyber Insurance," Information Systems Frontiers, Springer, vol. 21(5), pages 997-1018, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Kyu Lee & Younghoon Chang & Hun Yeong Kwon & Beopyeon Kim, 2020. "Reconciliation of Privacy with Preventive Cybersecurity: The Bright Internet Approach," Information Systems Frontiers, Springer, vol. 22(1), pages 45-57, February.
    2. Rajan, Rishabh & Rana, Nripendra P. & Parameswar, Nakul & Dhir, Sanjay & Sushil, & Dwivedi, Yogesh K., 2021. "Developing a modified total interpretive structural model (M-TISM) for organizational strategic cybersecurity management," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    3. Supunmali Ahangama, 2023. "Relating Social Media Diffusion, Education Level and Cybersecurity Protection Mechanisms to E-Participation Initiatives: Insights from a Cross-Country Analysis," Information Systems Frontiers, Springer, vol. 25(5), pages 1695-1711, October.
    4. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    5. Alessandro Mazzoccoli, 2023. "Optimal Cyber Security Investment in a Mixed Risk Management Framework: Examining the Role of Cyber Insurance and Expenditure Analysis," Risks, MDPI, vol. 11(9), pages 1-14, August.
    6. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    7. Ben Krishna & Satish Krishnan & M. P. Sebastian, 2023. "Examining the Relationship between National Cybersecurity Commitment, Culture, and Digital Payment Usage: An Institutional Trust Theory Perspective," Information Systems Frontiers, Springer, vol. 25(5), pages 1713-1741, October.
    8. Taylor Reynolds & Sarah Scheffler & Daniel J. Weitzner & Angelina Wu, 2024. "Mind the Gap: Securely modeling cyber risk based on security deviations from a peer group," Papers 2402.04166, arXiv.org.
    9. Hui, Kai-Lung & Zhou, Jiali, 2020. "The Economics of Hacking," MPRA Paper 102706, University Library of Munich, Germany.
    10. Abraham Onipe Okomanyi & Audra R. Sherwood & Ekundayo Shittu, 2024. "Exploring effective strategies against cyberattacks: the case of the automotive industry," Environment Systems and Decisions, Springer, vol. 44(4), pages 779-809, December.
    11. Kalpit Sharma & Arunabha Mukhopadhyay, 2023. "Cyber-risk Management Framework for Online Gaming Firms: an Artificial Neural Network Approach," Information Systems Frontiers, Springer, vol. 25(5), pages 1757-1778, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.01007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.