IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.11912.html
   My bibliography  Save this paper

Local Diversity of Condorcet Domains

Author

Listed:
  • Alexander Karpov
  • Klas Markstrom
  • S{o}ren Riis
  • Bei Zhou

Abstract

Several of the classical results in social choice theory demonstrate that in order for many voting systems to be well-behaved the set domain of individual preferences must satisfy some kind of restriction, such as being single-peaked on a political axis. As a consequence it becomes interesting to measure how diverse the preferences in a well-behaved domain can be. In this paper we introduce an egalitarian approach to measuring preference diversity, focusing on the abundance of distinct suborders one subsets of the alternative. We provide a common generalisation of the frequently used concepts of ampleness and copiousness. We give a detailed investigation of the abundance for Condorcet domains. Our theorems imply a ceiling for the local diversity in domains on large sets of alternatives, which show that in this measure Black's single-peaked domain is in fact optimal. We also demonstrate that for some numbers of alternatives, there are Condorcet domains which have largest local diversity without having maximum order.

Suggested Citation

  • Alexander Karpov & Klas Markstrom & S{o}ren Riis & Bei Zhou, 2024. "Local Diversity of Condorcet Domains," Papers 2401.11912, arXiv.org.
  • Handle: RePEc:arx:papers:2401.11912
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.11912
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    2. Donald E. Campbell & Jerry S. Kelly, 2003. "A strategy-proofness characterization of majority rule," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(3), pages 557-568, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Pycia & M. Utku Ünver, 2021. "Arrovian Efficiency and Auditability in Discrete Mechanism Design," Boston College Working Papers in Economics 1044, Boston College Department of Economics.
    2. Powers, Robert C. & Wells, Flannery, 2023. "Another strategy-proofness characterization of majority rule," Mathematical Social Sciences, Elsevier, vol. 122(C), pages 42-49.
    3. ,, 2009. "Strategy-proofness and single-crossing," Theoretical Economics, Econometric Society, vol. 4(2), June.
    4. Alejandro Saporiti & Fernando Tohmé, 2006. "Single-Crossing, Strategic Voting and the Median Choice Rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 363-383, April.
    5. Alejandro Saporiti, 2006. "Strategic voting on single-crossing domains," Economics Discussion Paper Series 0617, Economics, The University of Manchester.
    6. Felix Brand & Patrick Lederer & Sascha Tausch, 2023. "Strategyproof Social Decision Schemes on Super Condorcet Domains," Papers 2302.12140, arXiv.org.
    7. Berga, Dolors & Serizawa, Shigehiro, 2000. "Maximal Domain for Strategy-Proof Rules with One Public Good," Journal of Economic Theory, Elsevier, vol. 90(1), pages 39-61, January.
    8. Erlanson, Albin & Szwagrzak, Karol, 2013. "Strategy-Proof Package Assignment," Working Papers 2013:43, Lund University, Department of Economics.
    9. Felix Brandt & Patrick Lederer & René Romen, 2024. "Relaxed notions of Condorcet-consistency and efficiency for strategyproof social decision schemes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 19-55, August.
    10. Bock, Hans-Hermann & Day, William H. E. & McMorris, F. R., 1998. "Consensus rules for committee elections," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 219-232, May.
    11. Murat R. Sertel & M. Remzi Sanver, 2004. "Strong equilibrium outcomes of voting games ¶are the generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 22(2), pages 331-347, April.
    12. Marco LiCalzi, 2022. "Bipartite choices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(2), pages 551-568, December.
    13. John C. McCabe-Dansted & Arkadii Slinko, 2006. "Exploratory Analysis of Similarities Between Social Choice Rules," Group Decision and Negotiation, Springer, vol. 15(1), pages 77-107, January.
    14. James Schummer, 1999. "Almost-dominant Strategy Implementation," Discussion Papers 1278, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Aleskerov, Fuad & Karabekyan, Daniel & Sanver, M. Remzi & Yakuba, Vyacheslav, 2012. "On the manipulability of voting rules: The case of 4 and 5 alternatives," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 67-73.
    16. Lirong Xia, 2020. "How Likely Are Large Elections Tied?," Papers 2011.03791, arXiv.org, revised Jul 2021.
    17. Dindar, Hayrullah & Lainé, Jean, 2017. "Manipulation of single-winner large elections by vote pairing," Economics Letters, Elsevier, vol. 161(C), pages 105-107.
    18. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    19. Brandt, Felix & Saile, Christian & Stricker, Christian, 2022. "Strategyproof social choice when preferences and outcomes may contain ties," Journal of Economic Theory, Elsevier, vol. 202(C).
    20. Philippe Polome & Anne van der Veen & Peter Geurts, 2006. "Is Referendum the Same as Dichotomous Choice Contingent Valuation?," Land Economics, University of Wisconsin Press, vol. 82(2), pages 174-188.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.11912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.