IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.00662.html
   My bibliography  Save this paper

On Gaussian Process Priors in Conditional Moment Restriction Models

Author

Listed:
  • Sid Kankanala

Abstract

This paper studies quasi Bayesian estimation and uncertainty quantification for an unknown function that is identified by a nonparametric conditional moment restriction. We derive contraction rates for a class of Gaussian process priors. Furthermore, we provide conditions under which a Bernstein von Mises theorem holds for the quasi-posterior distribution. As a consequence, we show that optimally weighted quasi-Bayes credible sets have exact asymptotic frequentist coverage.

Suggested Citation

  • Sid Kankanala, 2023. "On Gaussian Process Priors in Conditional Moment Restriction Models," Papers 2311.00662, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2311.00662
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.00662
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019. "Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions," Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.
    2. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    3. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher D. Walker, 2024. "Semiparametric Bayesian Inference for a Conditional Moment Equality Model," Papers 2410.16017, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg Kaplan, 2012. "Inequality and the life cycle," Quantitative Economics, Econometric Society, vol. 3(3), pages 471-525, November.
    2. Noriko Amano, 2018. "Nutrition Inequality: The Role of Prices, Income, and Preferences," 2018 Meeting Papers 453, Society for Economic Dynamics.
    3. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    4. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    5. repec:spo:wpecon:info:hdl:2441/6ggbvnr6munghes9od0s108ro is not listed on IDEAS
    6. Ertian Chen, 2025. "Model-Adaptive Approach to Dynamic Discrete Choice Models with Large State Spaces," Papers 2501.18746, arXiv.org, revised Jun 2025.
    7. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    8. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    9. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    10. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    11. Vittorio Bassi & Raffaela Muoio & Tommaso Porzio & Ritwika Sen & Esau Tugume, 2022. "Achieving Scale Collectively," Econometrica, Econometric Society, vol. 90(6), pages 2937-2978, November.
    12. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    13. Javier García-Cicco, 2010. "Estimating Models for Monetary Policy Analysis in Emerging Countries," Working Papers Central Bank of Chile 561, Central Bank of Chile.
    14. Haroon Mumtaz & Gabor Pinter & Konstantinos Theodoridis, 2018. "What Do Vars Tell Us About The Impact Of A Credit Supply Shock?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(2), pages 625-646, May.
    15. Almunia, Miguel & Guceri, Irem & Lockwood, Ben & Scharf, Kimberley, 2020. "More giving or more givers? The effects of tax incentives on charitable donations in the UK," Journal of Public Economics, Elsevier, vol. 183(C).
    16. Matthew J. Baker, 2014. "Adaptive Markov chain Monte Carlo sampling and estimation in Mata," Stata Journal, StataCorp LLC, vol. 14(3), pages 623-661, September.
    17. Shujie Ma & Oliver Linton & Jiti Gao, 2018. "Estimation in semiparametric quantile factor models," CeMMAP working papers CWP07/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    19. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    20. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    21. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.00662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.