IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.17346.html
   My bibliography  Save this paper

Symmetric Bernoulli distributions and minimal dependence copulas

Author

Listed:
  • Alessandro Mutti
  • Patrizia Semeraro

Abstract

The key result of this paper is to characterize all the multivariate symmetric Bernoulli distributions whose sum is minimal under convex order. In doing so, we automatically characterize extremal negative dependence among Bernoulli variables, since multivariate distributions with minimal convex sums are known to be strongly negative dependent. Moreover, beyond its interest per se, this result provides insight into negative dependence within the class of copulas. In particular, two classes of copulas can be built from multivariate symmetric Bernoulli distributions: extremal mixture copulas and FGM copulas. We analyze the extremal negative dependence structures of copulas corresponding to symmetric Bernoulli vectors with minimal convex sums and explicitly find a class of minimal dependence copulas. Our main results derive from the geometric and algebraic representations of multivariate symmetric Bernoulli distributions, which effectively encode key statistical properties.

Suggested Citation

  • Alessandro Mutti & Patrizia Semeraro, 2023. "Symmetric Bernoulli distributions and minimal dependence copulas," Papers 2309.17346, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2309.17346
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.17346
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    2. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    3. Shao, Hui, 2017. "Decomposing aggregate risk into marginal risks under partial information: A top-down method," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 97-100.
    4. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    5. Cristófoli, María Elizabeth & García Fronti, Javier, 2019. "Macroeconomic Reverse Stress Testing: An Early-Warning System for Spanish Banking Regulators. Analysis Based on the 2008 Global Financial Crisis / Prueba de resistencia inversa Macroeconómica: una pru," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 9(2), pages 181-204, julio-dic.
    6. Stephan Eckstein & Gaoyue Guo & Tongseok Lim & Jan Obloj, 2019. "Robust pricing and hedging of options on multiple assets and its numerics," Papers 1909.03870, arXiv.org, revised Oct 2020.
    7. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    8. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    9. Tuitman, Jan & Vanduffel, Steven & Yao, Jing, 2020. "Correlation matrices with average constraints," Statistics & Probability Letters, Elsevier, vol. 165(C).
    10. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    11. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    12. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    13. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    14. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    15. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    16. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    17. Cornilly, Dries & Vanduffel, Steven, 2019. "Equivalent distortion risk measures on moment spaces," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 187-192.
    18. Shen, Jie & Shen, Yi & Wang, Ruodu, 2019. "Random locations of periodic stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 878-901.
    19. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    20. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.17346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.