IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.09287.html
   My bibliography  Save this paper

Modelling and Forecasting Macroeconomic Risk with Time Varying Skewness Stochastic Volatility Models

Author

Listed:
  • Andrea Renzetti

Abstract

Monitoring downside risk and upside risk to the key macroeconomic indicators is critical for effective policymaking aimed at maintaining economic stability. In this paper I propose a parametric framework for modelling and forecasting macroeconomic risk based on stochastic volatility models with Skew-Normal and Skew-t shocks featuring time varying skewness. Exploiting a mixture stochastic representation of the Skew-Normal and Skew-t random variables, in the paper I develop efficient posterior simulation samplers for Bayesian estimation of both univariate and VAR models of this type. In an application, I use the models to predict downside risk to GDP growth in the US and I show that these models represent a competitive alternative to semi-parametric approaches such as quantile regression. Finally, estimating a medium scale VAR on US data I show that time varying skewness is a relevant feature of macroeconomic and financial shocks.

Suggested Citation

  • Andrea Renzetti, 2023. "Modelling and Forecasting Macroeconomic Risk with Time Varying Skewness Stochastic Volatility Models," Papers 2306.09287, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2306.09287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.09287
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    2. Joshua C. C. Chan, 2019. "Large Bayesian Vector Autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Carlos Montes-Galdón & Eva Ortega, 2022. "Skewed SVARs: Tracking the Structural Sources of Macroeconomic Tail Risks," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 177-210, Emerald Group Publishing Limited.
    4. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    5. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botelho, Vasco & Foroni, Claudia & Renzetti, Andrea, 2024. "Labour at risk," European Economic Review, Elsevier, vol. 170(C).
    2. Botelho, Vasco & Foroni, Claudia & Renzetti, Andrea, 2023. "Labour at risk," Working Paper Series 2840, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Huber & Gary Koop, 2024. "Fast and order‐invariant inference in Bayesian VARs with nonparametric shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1301-1320, November.
    2. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    3. Sui, Jianli & Lv, Wenqiang & Gao, Xiang & Koedijk, Kees G., 2024. "China’s GDP-at-Risk: Real-Time Monitoring, Risk Tracing, and Macroeconomic Policy Effects," Journal of International Money and Finance, Elsevier, vol. 147(C).
    4. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    5. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
    7. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    9. Haroon Mumtaz & Paolo Surico, 2018. "Policy uncertainty and aggregate fluctuations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 319-331, April.
    10. Paul Ho, 2021. "Forecasting in the Absence of Precedent," Working Paper 21-10, Federal Reserve Bank of Richmond.
    11. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    12. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    13. Plakandaras, Vasilios & Gupta, Rangan & Wong, Wing-Keung, 2019. "Point and density forecasts of oil returns: The role of geopolitical risks," Resources Policy, Elsevier, vol. 62(C), pages 580-587.
    14. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    15. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    16. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    17. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    19. Luca Benati, 2008. "The “Great Moderation” in the United Kingdom," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(1), pages 121-147, February.
    20. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Feb 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.09287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.