Inference on Optimal Dynamic Policies via Softmax Approximation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Erica E. M. Moodie & Thomas S. Richardson & David A. Stephens, 2007. "Demystifying Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 63(2), pages 447-455, June.
- S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
- Emmanuel Rio, 2009. "Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 146-163, March.
- Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gyungbae Park, 2024. "Debiased Machine Learning when Nuisance Parameters Appear in Indicator Functions," Papers 2403.15934, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Rich Benjamin & Moodie Erica E. M. & A. Stephens David, 2016. "Influence Re-weighted G-Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 157-177, May.
- Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
- Peng Wu & Donglin Zeng & Haoda Fu & Yuanjia Wang, 2020. "On using electronic health records to improve optimal treatment rules in randomized trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1075-1086, December.
- Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
- Wei Liu & Zhiwei Zhang & Lei Nie & Guoxing Soon, 2017. "A Case Study in Personalized Medicine: Rilpivirine Versus Efavirenz for Treatment-Naive HIV Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1381-1392, October.
- Sies Aniek & Van Mechelen Iven, 2017. "Comparing Four Methods for Estimating Tree-Based Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
- Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
- Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
- Tsai Kao-Tai & Peace Karl, 2013. "Analysis of Subgroup Data of Clinical Trials," Journal of Causal Inference, De Gruyter, vol. 1(2), pages 193-207, September.
- Ravi B. Sojitra & Vasilis Syrgkanis, 2024. "Dynamic Local Average Treatment Effects," Papers 2405.01463, arXiv.org, revised May 2024.
- Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
- Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
- Ji Liu, 2024. "Education legislations that equalize: a study of compulsory schooling law reforms in post-WWII United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
- Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Han, Sukjin, 2021.
"Identification in nonparametric models for dynamic treatment effects,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
- Sukjin Han, 2018. "Identification in Nonparametric Models for Dynamic Treatment Effects," Papers 1805.09397, arXiv.org, revised Jan 2019.
- Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016.
"Model uncertainty and the effect of shall-issue right-to-carry laws on crime,"
European Economic Review, Elsevier, vol. 81(C), pages 32-67.
- Steven N. Durlauf & Salvador Navarro & David A. Rivers, 2014. "Model Uncertainty and the Effect of Shall-Issue Right-to-Carry Laws on Crime," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20144, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Steven N. Durlauf & Salvador Navarro & David A. Rivers, 2015. "Model Uncertainty and the Effect of Shall-Issue Right-to-Carry Laws on Crime," NBER Working Papers 21566, National Bureau of Economic Research, Inc.
- Kastoryano, Stephen, 2024. "Biological, Behavioural and Spurious Selection on the Kidney Transplant Waitlist," IZA Discussion Papers 16995, Institute of Labor Economics (IZA).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DES-2023-04-17 (Economic Design)
- NEP-ECM-2023-04-17 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.04416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.