IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.07415.html
   My bibliography  Save this paper

Modeling and Pricing Cyber Insurance -- Idiosyncratic, Systematic, and Systemic Risks

Author

Listed:
  • Kerstin Awiszus
  • Thomas Knispel
  • Irina Penner
  • Gregor Svindland
  • Alexander Vo{ss}
  • Stefan Weber

Abstract

The paper provides a comprehensive overview of modeling and pricing cyber insurance and includes clear and easily understandable explanations of the underlying mathematical concepts. We distinguish three main types of cyber risks: idiosyncratic, systematic, and systemic cyber risks. While for idiosyncratic and systematic cyber risks, classical actuarial and financial mathematics appear to be well-suited, systemic cyber risks require more sophisticated approaches that capture both network and strategic interactions. In the context of pricing cyber insurance policies, issues of interdependence arise for both systematic and systemic cyber risks; classical actuarial valuation needs to be extended to include more complex methods, such as concepts of risk-neutral valuation and (set-valued) monetary risk measures.

Suggested Citation

  • Kerstin Awiszus & Thomas Knispel & Irina Penner & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Modeling and Pricing Cyber Insurance -- Idiosyncratic, Systematic, and Systemic Risks," Papers 2209.07415, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2209.07415
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.07415
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    2. Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    5. Liu, Jia & Li, Jackie & Daly, Kevin, 2022. "Bayesian vine copulas for modelling dependence in data breach losses," Annals of Actuarial Science, Cambridge University Press, vol. 16(2), pages 401-424, July.
    6. Caroline Hillairet & Olivier Lopez & Louise d'Oultremont & Brieuc Spoorenberg, 2021. "Cyber contagion: impact of the network structure on the losses of an insurance portfolio," Working Papers hal-03388840, HAL.
    7. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    8. Francesca Biagini & Jean‐Pierre Fouque & Marco Frittelli & Thilo Meyer‐Brandis, 2019. "A unified approach to systemic risk measures via acceptance sets," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 329-367, January.
    9. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    10. Tom Britton & Philip D. O'Neill, 2002. "Bayesian Inference for Stochastic Epidemics in Populations with Random Social Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 375-390, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerstin Awiszus & Yannick Bell & Jan Luttringhaus & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Building Resilience in Cybersecurity -- An Artificial Lab Approach," Papers 2211.04762, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    2. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    3. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    4. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    5. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Bennet Skarczinski & Mathias Raschke & Frank Teuteberg, 2023. "Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 463-501, April.
    7. Domenico Giovanni & Arturo Leccadito & Marco Pirra, 2021. "On the determinants of data breaches: A cointegration analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 141-160, June.
    8. Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
    9. Martin Eling & Michael McShane & Trung Nguyen, 2021. "Cyber risk management: History and future research directions," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 93-125, March.
    10. Spencer Wheatley & Annette Hofmann & Didier Sornette, 2021. "Addressing insurance of data breach cyber risks in the catastrophe framework," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 53-78, January.
    11. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 2020. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 564-579, October.
    12. Alessandro Mazzoccoli, 2023. "Optimal Cyber Security Investment in a Mixed Risk Management Framework: Examining the Role of Cyber Insurance and Expenditure Analysis," Risks, MDPI, vol. 11(9), pages 1-14, August.
    13. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    14. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    15. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 0. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-16.
    16. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    17. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    18. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.
    19. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    20. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.07415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.