IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.12766.html
   My bibliography  Save this paper

Two-dimensional forward and backward transition rates

Author

Listed:
  • Theis Bathke
  • Marcus Christiansen

Abstract

Forward transition rates were originally introduced with the aim to evaluate life insurance liabilities market-consistently. While this idea turned out to have its limitations, recent literature repurposes forward transition rates as a tool for avoiding Markov assumptions in the calculation of life insurance reserves. While life insurance reserves are some form of conditional first-order moments, the calculation of conditional second-order moments needs an extension of the forward transition rate concept from one dimension to two dimensions. Two-dimensional forward transition rates are also needed for the calculation of path-dependent life insurance cash-flows as they occur upon contract modifications. Forward transition rates are designed for doing prospective calculations, and by a time-symmetric definition of so-called backward transition rates one can do retrospective calculations.

Suggested Citation

  • Theis Bathke & Marcus Christiansen, 2022. "Two-dimensional forward and backward transition rates," Papers 2204.12766, arXiv.org.
  • Handle: RePEc:arx:papers:2204.12766
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.12766
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norberg, Ragnar, 2010. "Forward mortality and other vital rates -- Are they the way forward?," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 105-112, October.
    2. Christiansen, Marcus C., 2010. "Biometric worst-case scenarios for multi-state life insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 190-197, October.
    3. Marcus Christiansen & Andreas Niemeyer, 2015. "On the forward rate concept in multi-state life insurance," Finance and Stochastics, Springer, vol. 19(2), pages 295-327, April.
    4. Kristian Buchardt & Christian Furrer & Mogens Steffensen, 2019. "Forward transition rates," Finance and Stochastics, Springer, vol. 23(4), pages 975-999, October.
    5. K. Buchardt & C. Furrer & M. Steffensen, 2018. "Forward transition rates," Papers 1811.00137, arXiv.org, revised Apr 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marcus C. & Furrer, Christian, 2022. "Extension of as-if-Markov modeling to scaled payments," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 288-306.
    2. Kristian Buchardt & Christian Furrer & Mogens Steffensen, 2019. "Forward transition rates," Finance and Stochastics, Springer, vol. 23(4), pages 975-999, October.
    3. K. Buchardt & C. Furrer & M. Steffensen, 2018. "Forward transition rates," Papers 1811.00137, arXiv.org, revised Apr 2019.
    4. Christian Furrer, 2022. "Scaled insurance cash flows: representation and computation via change of measure techniques," Finance and Stochastics, Springer, vol. 26(2), pages 359-382, April.
    5. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    6. Huang, Huaxiong & Milevsky, Moshe A. & Salisbury, Thomas S., 2012. "Optimal retirement consumption with a stochastic force of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 282-291.
    7. Djehiche, Boualem & Löfdahl, Björn, 2014. "Risk aggregation and stochastic claims reserving in disability insurance," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 100-108.
    8. Stefan Tappe & Stefan Weber, 2019. "Stochastic mortality models: An infinite dimensional approach," Papers 1907.05157, arXiv.org.
    9. Marcus Christiansen, 2012. "Multistate models in health insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 155-186, June.
    10. Marcus Christiansen & Andreas Niemeyer, 2015. "On the forward rate concept in multi-state life insurance," Finance and Stochastics, Springer, vol. 19(2), pages 295-327, April.
    11. Delong, Łukasz & Chen, An, 2016. "Asset allocation, sustainable withdrawal, longevity risk and non-exponential discounting," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 342-352.
    12. Daniel H. Alai & Katja Ignatieva & Michael Sherris, 2019. "The Investigation of a Forward-Rate Mortality Framework," Risks, MDPI, vol. 7(2), pages 1-22, June.
    13. Christiansen, Marcus C. & Denuit, Michel M., 2013. "Worst-case actuarial calculations consistent with single- and multiple-decrement life tables," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 1-5.
    14. Christiansen, Marcus & Denuit, Michel, 2012. "Worst-case actuarial calculations consistent with single- and multiple-decrement life tables," LIDAM Discussion Papers ISBA 2012027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Buchardt, Kristian, 2014. "Dependent interest and transition rates in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 167-179.
    16. Stefan Tappe & Stefan Weber, 2014. "Stochastic mortality models: an infinite-dimensional approach," Finance and Stochastics, Springer, vol. 18(1), pages 209-248, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.12766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.