IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.03951.html
   My bibliography  Save this paper

Quantifying Life Insurance Risk using Least-Squares Monte Carlo

Author

Listed:
  • Claus Baumgart
  • Johannes Krebs
  • Robert Lempertseder
  • Oliver Pfaffel

Abstract

This article presents a stochastic framework to quantify the biometric risk of an insurance portfolio in solvency regimes such as Solvency II or the Swiss Solvency Test (SST). The main difficulty in this context constitutes in the proper representation of long term risks in the profit-loss distribution over a one year horizon. This will be resolved by using least-squares Monte Carlo methods to quantify the impact of new experience on the annual re-valuation of the portfolio. Therefore our stochastic model can be seen as an example for an internal model, as allowed under Solvency II or the SST. Since our model does not rely upon nested simulations it is computationally fast and easy to implement.

Suggested Citation

  • Claus Baumgart & Johannes Krebs & Robert Lempertseder & Oliver Pfaffel, 2019. "Quantifying Life Insurance Risk using Least-Squares Monte Carlo," Papers 1910.03951, arXiv.org.
  • Handle: RePEc:arx:papers:1910.03951
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.03951
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    3. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    4. Floryszczak, Anthony & Le Courtois, Olivier & Majri, Mohamed, 2016. "Inside the Solvency 2 Black Box: Net Asset Values and Solvency Capital Requirements with a least-squares Monte-Carlo approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 15-26.
    5. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    6. Anthony Floryszczak & Olivier Le Courtois & Mohamed Majri, 2016. "Inside the Solvency 2 Black Box : Net asset values and solvency capital requirements with a least-squares Monte-Carlo approach," Post-Print hal-02313445, HAL.
    7. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2018. "A Least-Squares Monte Carlo Framework in Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 6(2), pages 1-26, June.
    8. Denuit, Michel & Haberman, Steven & Renshaw, Arthur E., 2013. "Approximations for quantiles of life expectancy and annuity values using the parametric improvement rate approach to modelling and projecting mortality," LIDAM Reprints ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
    2. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    3. Massimo Costabile & Fabio Viviano, 2020. "Testing the Least-Squares Monte Carlo Method for the Evaluation of Capital Requirements in Life Insurance," Risks, MDPI, vol. 8(2), pages 1-13, May.
    4. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    6. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    7. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    8. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    9. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    10. Le Courtois Olivier & Majri Mohamed & Shen Li, 2021. "Utility-Consistent Valuation Schemes for the Own Risk and Solvency Assessment of Life Insurance Companies," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 15(1), pages 47-79, January.
    11. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    12. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    13. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    14. Hainaut, Donatien & Devolder, Pierre & Pelsser, Antoon, 2018. "Robust evaluation of SCR for participating life insurances under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 107-123.
    15. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).
    16. Lu Xiong & Jiyao Luo & Hanna Vise & Madison White, 2023. "Distributed Least-Squares Monte Carlo for American Option Pricing," Risks, MDPI, vol. 11(8), pages 1-16, August.
    17. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2019. "A full and synthetic model for Asset-Liability Management in life insurance, and analysis of the SCR with the standard formula," Papers 1908.00811, arXiv.org.
    18. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.
    19. Wan, Cheng & Bertschi, Ljudmila, 2015. "Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 66-75.
    20. David Blake & Marco Morales & Hong Li & Anja Waegenaere & Bertrand Melenberg, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 459-475, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.03951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.