IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.05694.html
   My bibliography  Save this paper

Extremal dependence and spatial risk measures for insured losses due to extreme winds

Author

Listed:
  • Erwan Koch

Abstract

A meticulous assessment of the risk of impacts associated with extreme wind events is of great necessity for populations, civil authorities as well as the insurance industry. Using the concept of spatial risk measure and related set of axioms introduced by Koch (2017, 2019), we quantify the risk of losses due to extreme wind speeds. The insured cost due to wind events is proportional to the wind speed at a power ranging typically between 2 and 12. Hence we first perform a detailed study of the correlation structure of powers of the Brown-Resnick max-stable random fields and look at the influence of the power. Then, using the latter results, we thoroughly investigate spatial risk measures associated with variance and induced by powers of max-stable random fields. In addition, we show that spatial risk measures associated with several classical risk measures and induced by such cost fields satisfy (at least part of) the previously mentioned axioms under conditions which are generally satisfied for the risk of damaging extreme wind speeds. In particular, we specify the rates of spatial diversification in different cases, which is valuable for the insurance industry.

Suggested Citation

  • Erwan Koch, 2018. "Extremal dependence and spatial risk measures for insured losses due to extreme winds," Papers 1804.05694, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1804.05694
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.05694
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Philippe Naveau & Armelle Guillou & Daniel Cooley & Jean Diebolt, 2009. "Modelling pairwise dependence of maxima in space," Biometrika, Biometrika Trust, vol. 96(1), pages 1-17.
    2. Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
    3. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    4. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    5. Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erwan Koch & Christian Y. Robert, 2018. "Infinitesimal perturbation analysis for risk measures based on the Smith max-stable random field," Papers 1812.05893, arXiv.org, revised Jun 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.05694. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.