IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.01028.html
   My bibliography  Save this paper

On Optimal Retirement (How to Retire Early)

Author

Listed:
  • Philip Ernst
  • Dean Foster
  • Larry Shepp

Abstract

We pose an optimal control problem arising in a perhaps new model for retirement investing. Given a control function $f$ and our current net worth as $X(t)$ for any $t$, we invest an amount $f(X(t))$ in the market. We need a fortune of $M$ "superdollars" to retire and want to retire as early as possible. We model our change in net worth over each infinitesimal time interval by the Ito process $dX(t)= (1+f(X(t))dt+ f(X(t))dW(t)$. We show how to choose the optimal $f=f_0$ and show that the choice of $f_0$ is optimal among all nonanticipative investment strategies, not just among Markovian ones.

Suggested Citation

  • Philip Ernst & Dean Foster & Larry Shepp, 2016. "On Optimal Retirement (How to Retire Early)," Papers 1605.01028, arXiv.org.
  • Handle: RePEc:arx:papers:1605.01028
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.01028
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    2. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    3. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshihiro Shirai, 2023. "Acceptable Bilateral Gamma Parameters," Papers 2301.05333, arXiv.org.
    2. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    4. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    5. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.
    6. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    7. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    8. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    9. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    10. Jarrod Wilcox, 2020. "Better portfolios with higher moments," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 569-580, December.
    11. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    12. Gómez-Valle, Lourdes & Marti­nez-Rodri­guez, Julia, 2008. "Modelling the term structure of interest rates: An efficient nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 614-623, April.
    13. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    14. Francisco Campuzano-Bolarín & Fulgencio Marín-García & José Andrés Moreno-Nicolás & Marija Bogataj & David Bogataj, 2021. "Network Simulation Method for the evaluation of perturbed supply chains on a finite horizon," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 823-839, September.
    15. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    16. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    17. Jonathan Ingersoll, 2002. "The Subjective and Objective Evaluation of Incentive Stock Options," Yale School of Management Working Papers ysm276, Yale School of Management, revised 01 Jul 2003.
    18. Holger Kraft & Mogens Steffensen, 2006. "Portfolio problems stopping at first hitting time with application to default risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 123-150, February.
    19. Alex Garivaltis, 2018. "Super-Replication of the Best Pairs Trade in Hindsight," Papers 1810.02444, arXiv.org, revised Oct 2022.
    20. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.01028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.