IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1510.03928.html
   My bibliography  Save this paper

Weakly chained matrices, policy iteration, and impulse control

Author

Listed:
  • Parsiad Azimzadeh
  • Peter A. Forsyth

Abstract

This work is motivated by numerical solutions to Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) associated with combined stochastic and impulse control problems. In particular, we consider (i) direct control, (ii) penalized, and (iii) semi-Lagrangian discretization schemes applied to the HJBQVI problem. Scheme (i) takes the form of a Bellman problem involving an operator which is not necessarily contractive. We consider the well-posedness of the Bellman problem and give sufficient conditions for convergence of the corresponding policy iteration. To do so, we use weakly chained diagonally dominant matrices, which give a graph-theoretic characterization of weakly diagonally dominant M-matrices. We compare schemes (i)--(iii) under the following examples: (a) optimal control of the exchange rate, (b) optimal consumption with fixed and proportional transaction costs, and (c) pricing guaranteed minimum withdrawal benefits in variable annuities. We find that one should abstain from using scheme (i).

Suggested Citation

  • Parsiad Azimzadeh & Peter A. Forsyth, 2015. "Weakly chained matrices, policy iteration, and impulse control," Papers 1510.03928, arXiv.org, revised Sep 2017.
  • Handle: RePEc:arx:papers:1510.03928
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1510.03928
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
    2. Jean-Philippe Chancelier & Marouen Messaoud & Agnès Sulem, 2007. "A policy iteration algorithm for fixed point problems with nonexpansive operators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 239-259, April.
    3. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    4. Cadenillas, Abel & Zapatero, Fernando, 1999. "Optimal Central Bank Intervention in the Foreign Exchange Market," Journal of Economic Theory, Elsevier, vol. 87(1), pages 218-242, July.
    5. Mundaca, Gabriela & Oksendal, Bernt, 1998. "Optimal stochastic intervention control with application to the exchange rate," Journal of Mathematical Economics, Elsevier, vol. 29(2), pages 225-243, March.
    6. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    7. Seydel, Roland C., 2009. "Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3719-3748, October.
    8. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Max Reppen & Jean‐Charles Rochet & H. Mete Soner, 2020. "Optimal dividend policies with random profitability," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 228-259, January.
    2. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Zabaljauregui, 2019. "A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games," Papers 1909.03574, arXiv.org, revised Jun 2020.
    2. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    3. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    4. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    5. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    6. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    7. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    8. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    9. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    10. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    11. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    12. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    13. Paolo Angelis & Roberto Marchis & Antonio L. Martire & Emilio Russo, 2022. "A flexible lattice framework for valuing options on assets paying discrete dividends and variable annuities embedding GMWB riders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 415-446, June.
    14. Luo, Xiaolin & Shevchenko, Pavel V., 2015. "Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 5-15.
    15. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    16. Daniel Bauer & Thorsten Moenig, 2023. "Cheaper by the bundle: The interaction of frictions and option exercise in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 459-486, June.
    17. Gregory Gagnon, 2019. "Vanishing central bank intervention in stochastic impulse control," Annals of Finance, Springer, vol. 15(1), pages 125-153, March.
    18. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    19. Feng, Runhuan & Jing, Xiaochen & Ng, Kenneth Tsz Hin, 2025. "Optimal investment-withdrawal strategy for variable annuities under a performance fee structure," Journal of Economic Dynamics and Control, Elsevier, vol. 170(C).
    20. Eyal Neuman & Alexander Schied & Chengguo Weng & Xiaole Xue, 2020. "A central bank strategy for defending a currency peg," Papers 2008.00470, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1510.03928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.