IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.08738.html
   My bibliography  Save this paper

Variable Annuity with GMWB: surrender or not, that is the question

Author

Listed:
  • Xiaolin Luo
  • Pavel Shevchenko

Abstract

Under the optimal withdrawal strategy of a policyholder, the pricing of variable annuities with Guaranteed Minimum Withdrawal Benefit (GMWB) is an optimal stochastic control problem. The surrender feature available in marketed products allows termination of the contract before maturity, making it also an optimal stopping problem. Although the surrender feature is quite common in variable annuity contracts, there appears to be no published analysis and results for this feature in GMWB under optimal policyholder behaviour - results found in the literature so far are consistent with the absence of such a feature. Also, it is of practical interest to see how the much simpler bang-bang strategy, although not optimal for GMWB, compares with optimal GMWB strategy with surrender option. In this paper we extend our recently developed algorithm (Luo and Shevchenko 2015a) to include surrender option in GMWB and compare prices under different policyholder strategies: optimal, static and bang-bang. Results indicate that following a simple but sub-optimal bang-bang strategy does not lead to significant reduction in the price or equivalently in the fee, in comparison with the optimal strategy. We observed that the extra value added by the surrender option could add very significant value to the GMWB contract. We also performed calculations for static withdrawal with surrender option, which is the same as bang-bang minus the "no-withdrawal" choice. We find that the fee for such contract is only less than 1% smaller when compared to the case of bang-bang strategy, meaning that th "no-withdrawal" option adds little value to the contract.

Suggested Citation

  • Xiaolin Luo & Pavel Shevchenko, 2015. "Variable Annuity with GMWB: surrender or not, that is the question," Papers 1507.08738, arXiv.org.
  • Handle: RePEc:arx:papers:1507.08738
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.08738
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    2. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    3. Huang, Yao Tung & Kwok, Yue Kuen, 2014. "Analysis of optimal dynamic withdrawal policies in withdrawal guarantee products," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 19-43.
    4. Xiaolin Luo & Pavel V. Shevchenko, 2014. "Fast and Simple Method for Pricing Exotic Options using Gauss-Hermite Quadrature on a Cubic Spline Interpolation," Papers 1408.6938, arXiv.org, revised Dec 2014.
    5. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    6. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    2. Huansang Xu & Ruyi Liu & Marek Rutkowski, 2023. "Equity Protection Swaps: A New Type of Investment Insurance for Holders of Superannuation Accounts," Papers 2305.09472, arXiv.org, revised Apr 2024.
    3. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    4. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    2. Pavel V. Shevchenko & Xiaolin Luo, 2016. "Valuation of Variable Annuities with Guaranteed Minimum Withdrawal Benefit under Stochastic Interest Rate," Papers 1602.03238, arXiv.org, revised Jan 2017.
    3. Luo, Xiaolin & Shevchenko, Pavel V., 2015. "Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 5-15.
    4. Xiaolin Luo & Pavel Shevchenko, 2014. "Fast Numerical Method for Pricing of Variable Annuities with Guaranteed Minimum Withdrawal Benefit under Optimal Withdrawal Strategy," Papers 1410.8609, arXiv.org.
    5. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    6. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
    7. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    8. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    9. Huansang Xu & Ruyi Liu & Marek Rutkowski, 2023. "Equity Protection Swaps: A New Type of Investment Insurance for Holders of Superannuation Accounts," Papers 2305.09472, arXiv.org, revised Apr 2024.
    10. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    11. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    12. Xiaolin Luo & Pavel V. Shevchenko, 2015. "Valuation of capital protection options," Papers 1508.00668, arXiv.org, revised May 2017.
    13. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    14. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    15. Hyndman, Cody B. & Wenger, Menachem, 2014. "Valuation perspectives and decompositions for variable annuities with GMWB riders," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 283-290.
    16. Hsieh, Ming-hua & Wang, Jennifer L. & Chiu, Yu-Fen & Chen, Yen-Chih, 2018. "Valuation of variable long-term care Annuities with Guaranteed Lifetime Withdrawal Benefits: A variance reduction approach," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 246-254.
    17. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    18. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    19. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    20. Christophette Blanchet-Scalliet & Etienne Chevalier & Idris Kharroubi & Thomas Lim, 2015. "Max–Min Optimization Problem For Variable Annuities Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-35, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.08738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.