IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.2493.html
   My bibliography  Save this paper

On model-independent pricing/hedging using shortfall risk and quantiles

Author

Listed:
  • Erhan Bayraktar
  • Zhou Zhou

Abstract

We consider the pricing and hedging of exotic options in a model-independent set-up using \emph{shortfall risk and quantiles}. We assume that the marginal distributions at certain times are given. This is tantamount to calibrating the model to call options with discrete set of maturities but a continuum of strikes. In the case of pricing with shortfall risk, we prove that the minimum initial amount is equal to the super-hedging price plus the inverse of the utility at the given shortfall level. In the second result, we show that the quantile hedging problem is equivalent to super-hedging problems for knockout options. These results generalize the duality results of [5,6] to the model independent setting of [1].

Suggested Citation

  • Erhan Bayraktar & Zhou Zhou, 2013. "On model-independent pricing/hedging using shortfall risk and quantiles," Papers 1307.2493, arXiv.org.
  • Handle: RePEc:arx:papers:1307.2493
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.2493
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    2. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    3. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    4. Yan Dolinsky & Halil Mete Soner, 2013. "Martingale Optimal Transport and Robust Hedging in Continuous Time," Swiss Finance Institute Research Paper Series 13-13, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
    2. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    3. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    4. Erhan Bayraktar & Yu-Jui Huang & Zhou Zhou, 2013. "On hedging American options under model uncertainty," Papers 1309.2982, arXiv.org, revised Apr 2015.
    5. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    6. Cox, Alexander M.G. & Kinsley, Sam M., 2019. "Discretisation and duality of optimal Skorokhod embedding problems," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2376-2405.
    7. Arash Fahim & Yu-Jui Huang, 2014. "Model-independent Superhedging under Portfolio Constraints," Papers 1402.2599, arXiv.org, revised Jun 2015.
    8. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    9. Nicole Bäuerle & Daniel Schmithals, 2019. "Martingale optimal transport in the discrete case via simple linear programming techniques," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 453-476, December.
    10. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    11. Pierre Henry-Labordere & Jan Obloj & Peter Spoida & Nizar Touzi, 2013. "Maximum Maximum of Martingales given Marginals," Working Papers hal-00684005, HAL.
    12. Stephan Eckstein & Michael Kupper, 2019. "Martingale transport with homogeneous stock movements," Papers 1908.10242, arXiv.org, revised May 2021.
    13. Tongseok Lim, 2023. "Replication of financial derivatives under extreme market models given marginals," Papers 2307.00807, arXiv.org.
    14. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.
    15. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    16. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    17. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    18. Nicole Bauerle & Daniel Schmithals, 2019. "Consistent upper price bounds for exotic options given a finite number of call prices and their convergence," Papers 1907.09144, arXiv.org.
    19. Julio Backhoff & Gregoire Loeper & Jan Obloj, 2024. "Geometric Martingale Benamou-Brenier transport and geometric Bass martingales," Papers 2406.04016, arXiv.org, revised Feb 2025.
    20. David Hobson & Martin Klimmek, 2013. "Robust price bounds for the forward starting straddle," Papers 1304.2141, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.2493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.