IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.3437.html
   My bibliography  Save this paper

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

Author

Listed:
  • Sanjay Mehrotra
  • David Papp

Abstract

We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as non-polynomial moments can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum, and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with non-differentiable semi-infinite constraints indexed by an infinite-dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems whose constraints are differentiable and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.

Suggested Citation

  • Sanjay Mehrotra & David Papp, 2013. "A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization," Papers 1306.3437, arXiv.org, revised Aug 2014.
  • Handle: RePEc:arx:papers:1306.3437
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.3437
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Ling Huang & Sanjay Mehrotra, 2013. "An empirical evaluation of walk-and-round heuristics for mixed integer linear programs," Computational Optimization and Applications, Springer, vol. 55(3), pages 545-570, July.
    2. Ravindran Kannan & Hariharan Narayanan, 2012. "Random Walks on Polytopes and an Affine Interior Point Method for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 1-20, February.
    3. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    4. Kleiber, Christian & Stoyanov, Jordan, 2013. "Multivariate distributions and the moment problem," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 7-18.
    5. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    2. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    3. Arash Gourtani & Huifu Xu & David Pozo & Tri-Dung Nguyen, 2016. "Robust unit commitment with $$n-1$$ n - 1 security criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 373-408, June.
    4. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    5. Adrián Esteban-Pérez & Juan M. Morales, 2022. "Partition-based distributionally robust optimization via optimal transport with order cone constraints," 4OR, Springer, vol. 20(3), pages 465-497, September.
    6. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    7. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    8. Black, Ben & Ainslie, Russell & Dokka, Trivikram & Kirkbride, Christopher, 2023. "Distributionally robust resource planning under binomial demand intakes," European Journal of Operational Research, Elsevier, vol. 306(1), pages 227-242.
    9. Jian Hu & Junxuan Li & Sanjay Mehrotra, 2019. "A Data-Driven Functionally Robust Approach for Simultaneous Pricing and Order Quantity Decisions with Unknown Demand Function," Operations Research, INFORMS, vol. 67(6), pages 1564-1585, November.
    10. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
    11. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2022. "The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 749-763.
    12. Li-Ping Pang & Qi Wu & Jin-He Wang & Qiong Wu, 2020. "A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods," Computational Optimization and Applications, Springer, vol. 76(1), pages 125-153, May.
    13. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    14. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    15. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    2. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    3. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    4. Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
    5. Bansal, Manish & Mehrotra, Sanjay, 2019. "On solving two-stage distributionally robust disjunctive programs with a general ambiguity set," European Journal of Operational Research, Elsevier, vol. 279(2), pages 296-307.
    6. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    7. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    8. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    9. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    10. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    11. Ang, James & Meng, Fanwen & Sun, Jie, 2014. "Two-stage stochastic linear programs with incomplete information on uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 16-22.
    12. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    13. Akshit Goyal & Yiling Zhang & Chuan He, 2023. "Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1342-1360, November.
    14. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org, revised Mar 2025.
    15. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    16. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    17. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    18. Qiaoming Han & Donglei Du & Luis F. Zuluaga, 2014. "Technical Note---A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula," Operations Research, INFORMS, vol. 62(3), pages 535-542, June.
    19. Muer Yang & Sameer Kumar & Xinfang Wang & Michael J. Fry, 2024. "Scenario-robust pre-disaster planning for multiple relief items," Annals of Operations Research, Springer, vol. 335(3), pages 1241-1266, April.
    20. Cao, Jiaxin & Yang, Bo & Zhu, Shanying & Chung, Chi Yung & Guan, Xinping, 2022. "Multi-level coordinated energy management for energy hub in hybrid markets with distributionally robust scheduling," Applied Energy, Elsevier, vol. 311(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.3437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.