IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1211.5726.html
   My bibliography  Save this paper

Application of simplest random walk algorithms for pricing barrier options

Author

Listed:
  • M. Krivko
  • M. V. Tretyakov

Abstract

We demonstrate effectiveness of the first-order algorithm from [Milstein, Tretyakov. Theory Prob. Appl. 47 (2002), 53-68] in application to barrier option pricing. The algorithm uses the weak Euler approximation far from barriers and a special construction motivated by linear interpolation of the price near barriers. It is easy to implement and is universal: it can be applied to various structures of the contracts including derivatives on multi-asset correlated underlyings and can deal with various type of barriers. In contrast to the Brownian bridge techniques currently commonly used for pricing barrier options, the algorithm tested here does not require knowledge of trigger probabilities nor their estimates. We illustrate this algorithm via pricing a barrier caplet, barrier trigger swap and barrier swaption.

Suggested Citation

  • M. Krivko & M. V. Tretyakov, 2012. "Application of simplest random walk algorithms for pricing barrier options," Papers 1211.5726, arXiv.org.
  • Handle: RePEc:arx:papers:1211.5726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1211.5726
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1211.5726. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.