IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.6481.html
   My bibliography  Save this paper

Complex Systems with Trivial Dynamics

Author

Listed:
  • Ricardo Lopez-Ruiz

Abstract

In this communication, complex systems with a near trivial dynamics are addressed. First, under the hypothesis of equiprobability in the asymptotic equilibrium, it is shown that the (hyper) planar geometry of an $N$-dimensional multi-agent economic system implies the exponential (Boltzmann-Gibss) wealth distribution and that the spherical geometry of a gas of particles implies the Gaussian (Maxwellian) distribution of velocities. Moreover, two non-linear models are proposed to explain the decay of these statistical systems from an out-of-equilibrium situation toward their asymptotic equilibrium states.

Suggested Citation

  • Ricardo Lopez-Ruiz, 2012. "Complex Systems with Trivial Dynamics," Papers 1210.6481, arXiv.org.
  • Handle: RePEc:arx:papers:1210.6481
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.6481
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    2. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    3. Shivanian, Elyas & López-Ruiz, Ricardo, 2012. "A new model for ideal gases. Decay to the Maxwellian distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2600-2607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    2. Tao, Yong, 2015. "Universal laws of human society’s income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 89-94.
    3. Kaldasch, Joachim, 2012. "Evolutionary model of the personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5628-5642.
    4. Gregor Semieniuk & Victor M. Yakovenko, 2020. "Historical Evolution of Global Inequality in Carbon Emissions and Footprints versus Redistributive Scenarios," Papers 2004.00111, arXiv.org.
    5. Braun, Dieter, 2006. "Nonequilibrium thermodynamics of wealth condensation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 714-722.
    6. Markus P. A. Schneider, 2018. "Revisiting the thermal and superthermal two-class distribution of incomes: A critical perspective," Papers 1804.06341, arXiv.org.
    7. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    8. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    9. Nikolaos Papanikolaou, 2020. "The Econophysics of Labor Income," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 107-122.
    10. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    11. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    12. Garanina, O.S. & Romanovsky, M.Yu., 2015. "New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 1-9.
    13. Lavička, H. & Lin, L. & Novotný, J., 2010. "Employment, Production and Consumption model: Patterns of phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1708-1720.
    14. Giacomo Dimarco & Giuseppe Toscani & Mattia Zanella, 2024. "A multi-agent description of the influence of higher education on social stratification," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(3), pages 493-521, July.
    15. Scott Lawrence & Qin Liu & Victor M. Yakovenko, 2013. "Global inequality in energy consumption from 1980 to 2010," Papers 1312.6443, arXiv.org, revised Mar 2014.
    16. Ellis Scharfenaker & Markus P. A. Schneider, 2023. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Papers 23-41, Center for Economic Studies, U.S. Census Bureau.
    17. Elvis Oltean & Fedor V. Kusmartsev, 2013. "A Polynomial Distribution Applied to Income and Wealth Distribution," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(4), pages 1-2, August.
    18. Shaikh, Anwar & Jacobo, Juan Esteban, 2020. "Economic Arbitrage and the Econophysics of Income Inequality," Review of Behavioral Economics, now publishers, vol. 7(4), pages 299–315-2, December.
    19. de Mattos Neto, Paulo S.G. & Silva, David A. & Ferreira, Tiago A.E. & Cavalcanti, George D.C., 2011. "Market volatility modeling for short time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3444-3453.
    20. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.6481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.