IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Record statistics and persistence for a random walk with a drift

Listed author(s):
  • Satya N. Majumdar
  • Gregory Schehr
  • Gregor Wergen
Registered author(s):

    We study the statistics of records of a one-dimensional random walk of n steps, starting from the origin, and in presence of a constant bias c. At each time-step the walker makes a random jump of length \eta drawn from a continuous distribution f(\eta) which is symmetric around a constant drift c. We focus in particular on the case were f(\eta) is a symmetric stable law with a L\'evy index 0 after n steps as well as its full distribution P(R,n). We also compute the statistics of the ages of the longest and the shortest lasting record. Our exact computations show the existence of five distinct regions in the (c, 0

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1206.6972.

    in new window

    Date of creation: Jun 2012
    Date of revision: Aug 2012
    Publication status: Published in J. Phys. A: Math. Theor. 45 (2012) 355002
    Handle: RePEc:arx:papers:1206.6972
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.6972. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.