IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1110.5276.html
   My bibliography  Save this paper

Exact and asymptotic results for insurance risk models with surplus-dependent premiums

Author

Listed:
  • Hansjorg Albrecher
  • Corina Constantinescu
  • Zbigniew Palmowski
  • Georg Regensburger
  • Markus Rosenkranz

Abstract

In this paper we develop a symbolic technique to obtain asymptotic expressions for ruin probabilities and discounted penalty functions in renewal insurance risk models when the premium income depends on the present surplus of the insurance portfolio. The analysis is based on boundary problems for linear ordinary differential equations with variable coefficients. The algebraic structure of the Green's operators allows us to develop an intuitive way of tackling the asymptotic behavior of the solutions, leading to exponential-type expansions and Cram\'er-type asymptotics. Furthermore, we obtain closed-form solutions for more specific cases of premium functions in the compound Poisson risk model.

Suggested Citation

  • Hansjorg Albrecher & Corina Constantinescu & Zbigniew Palmowski & Georg Regensburger & Markus Rosenkranz, 2011. "Exact and asymptotic results for insurance risk models with surplus-dependent premiums," Papers 1110.5276, arXiv.org.
  • Handle: RePEc:arx:papers:1110.5276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1110.5276
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    2. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.5276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.