IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1107.4632.html
   My bibliography  Save this paper

From Smile Asymptotics to Market Risk Measures

Author

Listed:
  • Ronnie Sircar
  • Stephan Sturm

Abstract

The left tail of the implied volatility skew, coming from quotes on out-of-the-money put options, can be thought to reflect the market's assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measures, which are given as solutions of backward stochastic differential equations (BSDEs), to establish a link between these two approaches to risk measurement. We derive a characterization of the implied volatility in terms of the solution of a nonlinear PDE and provide a small time-to-maturity expansion and numerical solutions. This procedure allows to choose convex risk measures in a conveniently parametrized class, distorted entropic dynamic risk measures, which we introduce here, such that the asymptotic volatility skew under indifference pricing can be matched with the market skew. We demonstrate this in a calibration exercise to market implied volatility data.

Suggested Citation

  • Ronnie Sircar & Stephan Sturm, 2011. "From Smile Asymptotics to Market Risk Measures," Papers 1107.4632, arXiv.org, revised Jul 2012.
  • Handle: RePEc:arx:papers:1107.4632
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1107.4632
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    2. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    3. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig, 2014. "Indifference prices and implied volatilities," Papers 1412.5520, arXiv.org, revised Sep 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.4632. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.