IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1107.0164.html
   My bibliography  Save this paper

One-year reserve risk including a tail factor: closed formula and bootstrap approaches

Author

Listed:
  • Alexandre Boumezoued

    (SAF)

  • Yoboua Angoua

    (SAF)

  • Laurent Devineau

    (SAF)

  • Jean-Philippe Boisseau

Abstract

In this paper, we detail the main simulation methods used in practice to measure one-year reserve risk, and describe the bootstrap method providing an empirical distribution of the Claims Development Result (CDR) whose variance is identical to the closed-form expression of the prediction error proposed by W\"uthrich et al. (2008). In particular, we integrate the stochastic modeling of a tail factor in the bootstrap procedure. We demonstrate the equivalence with existing analytical results and develop closed-form expressions for the error of prediction including a tail factor. A numerical example is given at the end of this study.

Suggested Citation

  • Alexandre Boumezoued & Yoboua Angoua & Laurent Devineau & Jean-Philippe Boisseau, 2011. "One-year reserve risk including a tail factor: closed formula and bootstrap approaches," Papers 1107.0164, arXiv.org, revised Apr 2012.
  • Handle: RePEc:arx:papers:1107.0164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1107.0164
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. Buchwalder, Markus & Bühlmann, Hans & Merz, Michael & Wüthrich, Mario V., 2006. "The Mean Square Error of Prediction in the Chain Ladder Reserving Method (Mack and Murphy Revisited)," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(02), pages 521-542, November.
    3. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    4. England, P. D. & Verrall, R. J., 2006. "Predictive Distributions of Outstanding Liabilities in General Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(02), pages 221-270, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.0164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.