IDEAS home Printed from
   My bibliography  Save this paper

Stochastic evolution equations in portfolio credit modelling with applications to exotic credit products


  • Nick Bush
  • Ben M. Hambly
  • Helen Haworth
  • Lei Jin
  • Christoph Reisinger


We consider a structural credit model for a large portfolio of credit risky assets where the correlation is due to a market factor. By considering the large portfolio limit of this system we show the existence of a density process for the asset values. This density evolves according to a stochastic partial differential equation and we establish existence and uniqueness for the solution taking values in a suitable function space. The loss function of the portfolio is then a function of the evolution of this density at the default boundary. We develop numerical methods for pricing and calibration of the model to credit indices and consider its performance pre and post credit crunch. Finally, we give further examples illustrating the valuation of exotic credit products, specifically forward starting CDOs.

Suggested Citation

  • Nick Bush & Ben M. Hambly & Helen Haworth & Lei Jin & Christoph Reisinger, 2011. "Stochastic evolution equations in portfolio credit modelling with applications to exotic credit products," Papers 1103.4947,, revised Apr 2011.
  • Handle: RePEc:arx:papers:1103.4947

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272,, revised Feb 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.4947. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.