IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1006.0697.html
   My bibliography  Save this paper

Recent progress in random metric theory and its applications to conditional risk measures

Author

Listed:
  • Tiexin Guo

Abstract

The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally $L^{0}-$convex topology and in particular a characterization for a locally $L^{0}-$convex module to be $L^{0}-$pre$-$barreled. Section 7 gives some basic results on $L^{0}-$convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable $L^{\infty}-$type of conditional convex risk measure and every continuous $L^{p}-$type of convex conditional risk measure ($1\leq p

Suggested Citation

  • Tiexin Guo, 2010. "Recent progress in random metric theory and its applications to conditional risk measures," Papers 1006.0697, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:1006.0697
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1006.0697
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
    4. Philippe Artzner & Freddy Delbaen & Jeanā€Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiexin Guo & Shien Zhao & Xiaolin Zeng, 2012. "On random convex analysis -- the analytic foundation of the module approach to conditional risk measures," Papers 1210.1848, arXiv.org, revised Mar 2013.
    2. Beatrice Acciaio & Verena Goldammer, 2013. "Optimal portfolio selection via conditional convex risk measures on L p," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(1), pages 1-21, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1006.0697. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.