IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1003.2981.html
   My bibliography  Save this paper

Statistical identification with hidden Markov models of large order splitting strategies in an equity market

Author

Listed:
  • Gabriella Vaglica
  • Fabrizio Lillo
  • Rosario N. Mantegna

Abstract

Large trades in a financial market are usually split into smaller parts and traded incrementally over extended periods of time. We address these large trades as hidden orders. In order to identify and characterize hidden orders we fit hidden Markov models to the time series of the sign of the tick by tick inventory variation of market members of the Spanish Stock Exchange. Our methodology probabilistically detects trading sequences, which are characterized by a net majority of buy or sell transactions. We interpret these patches of sequential buying or selling transactions as proxies of the traded hidden orders. We find that the time, volume and number of transactions size distributions of these patches are fat tailed. Long patches are characterized by a high fraction of market orders and a low participation rate, while short patches have a large fraction of limit orders and a high participation rate. We observe the existence of a buy-sell asymmetry in the number, average length, average fraction of market orders and average participation rate of the detected patches. The detected asymmetry is clearly depending on the local market trend. We also compare the hidden Markov models patches with those obtained with the segmentation method used in Vaglica {\it et al.} (2008) and we conclude that the former ones can be interpreted as a partition of the latter ones.

Suggested Citation

  • Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2010. "Statistical identification with hidden Markov models of large order splitting strategies in an equity market," Papers 1003.2981, arXiv.org.
  • Handle: RePEc:arx:papers:1003.2981
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1003.2981
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stuart Barber, 2008. "Book Review," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(12), pages 1427-1428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Fei & Zhong, Li-Xin, 2012. "The price impact asymmetry of institutional trading in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2667-2677.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1003.2981. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.