Author
Abstract
This paper analyzes methods to forecast the cash demand for the Costa Rican economy, the relative participation of each denomination, and the behavior of cash unfit for further circulation. These elements are relevant inputs for the Central Bank of Costa Rica to fulfill its essential and exclusive function of issuing banknotes and coins according to the real needs of the national economy. To forecast the cash demand, five models are compared: ordinary least squares (OLS), autoregressive integrated moving average model (ARIMA), vector error correction model (VECM), artificial neural network model (RNA), and the Holt-Winters method. Regarding the relative participation of each denomination, compositional time series are used, which allows working with series that represent a proportion, and therefore their sum is equal to the unit. For this, an additive log-ratio transformation is applied to the data, to later implement an autoregressive vector model. Finally, the study contemplates the analysis of the time series of unfit cash. It is shown that the same techniques used to forecast the demand for cash can be applied in this case. ***Resumen: Esta investigación se dedica al análisis de métodos que permitan pronosticar la demanda de numerario para la economía costarricense, la participación relativa de cada denominación, y el comportamiento del numerario deteriorado. Estos elementos son insumos relevantes para que el Banco Central de Costa Rica pueda cumplir con su función esencial y exclusiva de emitir billetes y monedas de acuerdo con las necesidades reales de la economía nacional. Para pronosticar la demanda de numerario se compara el desempeño de cinco tipos de modelos: mínimos cuadrados ordinarios (MCO), modelo autorregresivo integrado de medias móviles (ARIMA), modelo de vector de corrección de errores (VECM), modelo de redes neuronales artificiales (RNA) y el método de Holt-Winters. Respecto a la participación relativa de cada denominación, se recurre al análisis de series de tiempo composicionales, que permiten trabajar con series que representan una proporción, y por ende su suma es igual a la unidad. Para esto, se aplica una transformación del log-cociente aditiva a los datos, para posteriormente implementar un modelo de vectores autorregresivos. Finalmente, el estudio contempla el análisis de las series de tiempo de numerario deteriorado. Se muestra que las mismas técnicas utilizadas para pronosticar la demanda de numerario pueden ser aplicadas en este caso.
Suggested Citation
Esteban Méndez-Chacón, 2023.
"Cash Demand Forecast Models for Costa Rica,"
Documentos de Trabajo
2301, Banco Central de Costa Rica.
Handle:
RePEc:apk:doctra:2301
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
;
;
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
- E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apk:doctra:2301. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Investigación Económica (email available below). General contact details of provider: https://edirc.repec.org/data/bccrrcr.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.