IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models

Listed author(s):
  • Stephen Bazen


    (AMSE Aix-Marseille School of Economics), CNRS and EHESS)

  • Xavier Joutard


    (AMSE (Aix-Marseille School of Economics), CNRS and EHESS)

The widely used Oaxaca decomposition applies to linear models. Extending it to commonly used nonlinear models such as binary choice and duration models is not straightforward. This paper shows that the original decomposition using a linear model can be obtained as a first order Taylor expansion. This basis provides a means of obtaining a coherent and unified approach which applies to nonlinear models, which we refer to as a Taylor decomposition. Explicit formulae are provided for the Taylor decomposition for the main nonlinear models used in applied econometrics including the Probit binary choice and Weibull duration models. The detailed decomposition of the explained component is expressed in terms of what are usually referred to as marginal effects and a remainder. Given Jensen's inequality, the latter will always be present in nonlinear models unless an ad hoc or tautological basis for decomposition is used.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Aix-Marseille School of Economics, Marseille, France in its series AMSE Working Papers with number 1332.

in new window

Length: 41 pages
Date of creation: May 2013
Date of revision: May 2013
Handle: RePEc:aim:wpaimx:1332
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aim:wpaimx:1332. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Yves Doazan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.