IDEAS home Printed from https://ideas.repec.org/p/ags/eaae11/114529.html
   My bibliography  Save this paper

A model for prediction of spatial farm structure

Author

Listed:
  • Hoveid, Oyvind
  • Stokstad, Grete

Abstract

Spatial micro structure and its change over time is recorded for Norwegian farm firms. Relative strong correlations between geographically close neighbors are expected, either because growing farms swallow the smaller ones, or because they are affected by some spatially related unobserved factors. Strong correlations over time are also expected because of prevalent family farming. The paper proposes a state-of-the-art Markov chain model in order to predict the spatial and temporal micro structure taking account of both non-stationarity and spatio/temporal correlations by means of techniques from non-linear state space modeling and Gaussian Markov random fields. The model and the complete data set is then a device with which one can investigate the consequences of ignoring spatial and/or temporal correlations, both with complete data and with more sparsely sampled data, like FADN panels or USDA's repeated cross-sections (ARMS).

Suggested Citation

  • Hoveid, Oyvind & Stokstad, Grete, 2011. "A model for prediction of spatial farm structure," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114529, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae11:114529
    DOI: 10.22004/ag.econ.114529
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/114529/files/Hoveid_Oyvind_657.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.114529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Piet, Laurent, 2008. "The evolution of farm size distribution: revisiting the Markov chain model," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44269, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    2. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    3. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    7. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    8. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    9. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    10. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    11. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    12. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    13. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    14. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    15. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    16. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    17. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    18. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    19. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.
    20. Önundur Páll Ragnarsson & Jón Magnús Hannesson & Loftur Hreinsson, 2019. "Financial cycles as early warning indicators - Lessons from the Nordic region," Economics wp80, Department of Economics, Central bank of Iceland.
    21. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    22. Planas, Christophe & Roeger, Werner & Rossi, Alessandro, 2007. "How much has labour taxation contributed to European structural unemployment?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1359-1375, April.

    More about this item

    Keywords

    Farm Management;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.