IDEAS home Printed from https://ideas.repec.org/p/ags/eaae11/114529.html
   My bibliography  Save this paper

A model for prediction of spatial farm structure

Author

Listed:
  • Hoveid, Oyvind
  • Stokstad, Grete

Abstract

Spatial micro structure and its change over time is recorded for Norwegian farm firms. Relative strong correlations between geographically close neighbors are expected, either because growing farms swallow the smaller ones, or because they are affected by some spatially related unobserved factors. Strong correlations over time are also expected because of prevalent family farming. The paper proposes a state-of-the-art Markov chain model in order to predict the spatial and temporal micro structure taking account of both non-stationarity and spatio/temporal correlations by means of techniques from non-linear state space modeling and Gaussian Markov random fields. The model and the complete data set is then a device with which one can investigate the consequences of ignoring spatial and/or temporal correlations, both with complete data and with more sparsely sampled data, like FADN panels or USDA's repeated cross-sections (ARMS).

Suggested Citation

  • Hoveid, Oyvind & Stokstad, Grete, 2011. "A model for prediction of spatial farm structure," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114529, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae11:114529
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/114529
    Download Restriction: no

    More about this item

    Keywords

    Farm Management;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/eaaeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.