IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this book chapter

Environment, Uncertainty, and Option Values

In: Handbook of Environmental Economics

Listed author(s):
  • Maler, Karl-Goran
  • Fisher, Anthony
Registered author(s):

    We analyze in this chapter decision-making when costs and benefits of an action are uncertain, that is, when future preferences are uncertain. We begin, in Section 2, with the classical analysis by Krutilla et al. (1972) of whether the expected consumer's surplus is a correct measure of the net benefits from the action. It turns out that for one individual, the correct measure is the expected consumer's surplus corrected with one term representing the covariance between the state-contingent consumer's surplus and the state-contingent marginal utility of wealth and a second term representing risk aversion. This corrected measure is what Krutilla et al. (1972) called the option value. Thus the difference between option value and expected consumer's surplus is determined by the covariance between preferences and consumer's surplus and risk aversion. The sign of this difference will therefore depend on these factors. We apply this result to a number of cases in order to derive additional useful results. First we look at the aggregate (over a set of individuals) option value and establish a general result. We then apply this result to the allocation of risk in the context of both public and private goods.In Section 3, we introduce relevant dynamic elements to the general problem of decisions under uncertainty. We analyze actions that may have irreversible effects, but where the decision-maker can improve her information about the true future preferences. This problem was first studied by Arrow and Fisher (1974) and Henry (1974), who showed (as we do in Section 3.2) that when the decision-maker has to choose between two actions, of which one is irreversible, and future benefits are uncertain in the first time period, maximizing expected value will result in a biased result: the irreversible action will be chosen too often. However, this result is based on assumptions of linearity. In order to study the problem without this restriction, we rely on Epstein's (1980) framework, which we present in some detail. The result is that convexity (concavity) assumptions are essential to establish the direction of the bias. We also use Epstein's framework to look at issues such as uncertainty about cost of restoration and uncertainty about irreversibility.All of the results to this point are for models with just two time periods. In Section 4, we analyze the many-period case, adopting a somewhat different analytical framework: stochastic dynamic programming, as presented in Dixit and Pindyck (1994). Additional results in continuous time are developed, drawing on the theory of stochastic processes. We look in particular at the "optimal stopping problem," a useful and important special case, and present an empirical application due to Conrad (1997): when, if ever, to cut an old-growth forest that also yields benefits in its natural state.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    in new window

    This chapter was published in:
  • K. G. Mäler & J. R. Vincent (ed.), 2006. "Handbook of Environmental Economics," Handbook of Environmental Economics, Elsevier, edition 1, volume 2, number 2, June.
  • This item is provided by Elsevier in its series Handbook of Environmental Economics with number 2-13.
    Handle: RePEc:eee:envchp:2-13
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:envchp:2-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.