IDEAS home Printed from https://ideas.repec.org/f/pfe430.html
   My authors  Follow this author

Zhen-Hua Feng

Personal Details

First Name:Zhen-Hua
Middle Name:
Last Name:Feng
Suffix:
RePEc Short-ID:pfe430
[This author has chosen not to make the email address public]

Affiliation

Center for Energy and Environmental Policy Research (CEEP)
Beijing Institute of Technology

Beijing, China
http://ceep.bit.edu.cn/

: 86-10-68918651
86-10-68918651

RePEc:edi:cebitcn (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Zhen-Hua Feng & Yi-Ming Wei & Kai Wang, 2011. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," CEEP-BIT Working Papers 19, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  2. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2010. "How does carbon price change? Evidences from EU ETS," CEEP-BIT Working Papers 11, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  3. Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2010. "The impact of household consumption on energy use and CO2 emissions in China," CEEP-BIT Working Papers 6, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  4. Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2009. "Carbon price volatility: Evidence from EU ETS," CEEP-BIT Working Papers 4, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

Articles

  1. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
  2. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
  3. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
  4. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2011. "How does carbon price change? Evidences from EU ETS," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 132-144.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Zhen-Hua Feng & Yi-Ming Wei & Kai Wang, 2011. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," CEEP-BIT Working Papers 19, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    2. Herrera, Rodrigo & González, Nicolás, 2014. "The modeling and forecasting of extreme events in electricity spot markets," International Journal of Forecasting, Elsevier, vol. 30(3), pages 477-490.
    3. Yifei Hua & Feng Dong, 2019. "China’s Carbon Market Development and Carbon Market Connection: A Literature Review," Energies, MDPI, Open Access Journal, vol. 12(9), pages 1-25, May.
    4. Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
    5. Reboredo, Juan C. & Ugando, Mikel, 2015. "Downside risks in EU carbon and fossil fuel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 17-35.
    6. Cummins, Mark, 2013. "EU ETS market interactions: The case for multiple hypothesis testing approaches," Applied Energy, Elsevier, vol. 111(C), pages 701-709.
    7. Jamshidi, Movahed & Kebriaei, Hamed & Sheikh-El-Eslami, Mohammad-Kazem, 2018. "An interval-based stochastic dominance approach for decision making in forward contracts of electricity market," Energy, Elsevier, vol. 158(C), pages 383-395.
    8. Bao-jun Tang & Cheng Shen & Yi-fan Zhao, 2015. "Market risk in carbon market: an empirical analysis of the EUA and sCER," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 333-346, February.
    9. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-17, July.
    10. Shackleton, Ross T. & Angelstam, Per & van der Waal, Benjamin & Elbakidze, Marine, 2017. "Progress made in managing and valuing ecosystem services: a horizon scan of gaps in research, management and governance," Ecosystem Services, Elsevier, vol. 27(PB), pages 232-241.
    11. Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
    12. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    13. Jarmila Zimmermannová, 2015. "Pilot Analysis of the Behaviour of Companies Within the 3rd Trading Period of the EU ETS in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 2213-2220.
    14. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, Open Access Journal, vol. 11(3), pages 1-22, January.
    15. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    16. Crossland, Jarrod & Li, Bin & Roca, Eduardo, 2013. "Is the European Union Emissions Trading Scheme (EU ETS) informationally efficient? Evidence from momentum-based trading strategies," Applied Energy, Elsevier, vol. 109(C), pages 10-23.
    17. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.

  2. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2010. "How does carbon price change? Evidences from EU ETS," CEEP-BIT Working Papers 11, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    2. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    3. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    4. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    5. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    6. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    7. Chaton, Corinne & Creti, Anna & Peluchon, Benoît, 2015. "Banking and back-loading emission permits," Energy Policy, Elsevier, vol. 82(C), pages 332-341.
    8. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-17, July.
    9. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    10. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, Open Access Journal, vol. 12(5), pages 1-22, March.

  3. Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2010. "The impact of household consumption on energy use and CO2 emissions in China," CEEP-BIT Working Papers 6, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Dung Tien Nguyen & Thanh Quang Ngo, 2019. "Dynamics of Household-level Energy Access in Vietnam during 2002-2014," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 132-145.
    2. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, Open Access Journal, vol. 9(9), pages 1-25, September.
    3. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    4. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    5. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
    6. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, Open Access Journal, vol. 8(9), pages 1-21, September.
    7. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    8. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    9. Wenwen Wang & Ming Zhang, 2015. "Direct and indirect energy consumption of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1693-1705, December.
    10. Bing Wang & Hua-Nan Li & Xiao-Chen Yuan & Zhen-Ming Sun, 2017. "Energy Poverty in China: A Dynamic Analysis Based on a Hybrid Panel Data Decision Model," Energies, MDPI, Open Access Journal, vol. 10(12), pages 1-14, November.
    11. Yin, Yanhong & Mizokami, Shoshi & Aikawa, Kohei, 2015. "Compact development and energy consumption: Scenario analysis of urban structures based on behavior simulation," Applied Energy, Elsevier, vol. 159(C), pages 449-457.
    12. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    13. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    14. Zhaohua Wang & Chen Wang & Jianhua Yin, 2015. "Strategies for addressing climate change on the industrial level: affecting factors to CO 2 emissions of energy-intensive industries in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 303-317, February.
    15. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    16. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    17. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    18. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    19. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, Open Access Journal, vol. 11(20), pages 1-17, October.
    20. Jin Fan & Shanyong Wang & Yanrui Wu & Jun Li & Dingtao Zhao, 2015. "Buffer Effect and Price Effect of a Personal Carbon Trading Scheme," Economics Discussion / Working Papers 15-07, The University of Western Australia, Department of Economics.
    21. Zhang, Rui & Wei, Taoyuan & Glomsrød, Solveig & Shi, Qinghua, 2014. "Bioenergy consumption in rural China: Evidence from a survey in three provinces," Energy Policy, Elsevier, vol. 75(C), pages 136-145.
    22. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    23. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    24. Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
    25. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2012. "CO2 emissions and economic development: China's 12th five-year plan," Energy Policy, Elsevier, vol. 42(C), pages 468-475.
    26. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2019. "The role of environmental values, socio-demographics and building characteristics in setting room temperatures in winter," Energy, Elsevier, vol. 171(C), pages 1183-1192.
    27. Jingbo Fan & Aobo Ran & Xiaomeng Li, 2019. "A Study on the Factors Affecting China’s Direct Household Carbon Emission and Comparison of Regional Differences," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-14, September.
    28. Garg, Amit & Shukla, P.R. & Maheshwari, Jyoti & Upadhyay, Jigeesha, 2014. "An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India," Energy Policy, Elsevier, vol. 66(C), pages 568-584.
    29. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-17, May.
    30. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    31. Balachandra, P., 2011. "Dynamics of rural energy access in India: An assessment," Energy, Elsevier, vol. 36(9), pages 5556-5567.
    32. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    33. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, Open Access Journal, vol. 10(12), pages 1-18, December.
    34. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    35. Yao, Xi-Long & Liu, Yang & Yan, Xiao, 2014. "A quantile approach to assess the effectiveness of the subsidy policy for energy-efficient home appliances: Evidence from Rizhao, China," Energy Policy, Elsevier, vol. 73(C), pages 512-518.
    36. Haiyan Zhang & Michael L. Lahr, 2018. "Households’ Energy Consumption Change in China: A Multi-Regional Perspective," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-17, July.
    37. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    38. Yin, Yanhong & Mizokami, Shoshi & Maruyama, Takuya, 2013. "An analysis of the influence of urban form on energy consumption by individual consumption behaviors from a microeconomic viewpoint," Energy Policy, Elsevier, vol. 61(C), pages 909-919.
    39. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    40. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    41. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    42. Hamamoto, Mitsutsugu, 2013. "Energy-saving behavior and marginal abatement cost for household CO2 emissions," Energy Policy, Elsevier, vol. 63(C), pages 809-813.
    43. Genovaitė Liobikienė & Justina Mandravickaitė, 2013. "Convergence of new members of the EU: changes in household consumption expenditure structure regarding environmental impact during the prosperous period," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 407-427, April.
    44. Ming Zhang & Peng Li, 2015. "Analyzing the impact of urbanization on energy consumption in Jiangsu Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 177-190, March.
    45. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-21, November.
    46. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    47. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    48. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, Open Access Journal, vol. 9(7), pages 1-19, July.
    49. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    50. Jing Cao, Mun S. Ho, and Huifang Liang, 2016. "Household energy demand in Urban China: Accounting for regional prices and rapid income change," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    51. Ratneswary Rasiah & Sotheeswari Somasundram & Geetha Subramaniam, 2018. "A Multivariate Cointegration Analysis of the Macroeconomic Determinants of Carbon Emissions in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 202-208.
    52. Wang, Bing & Liang, Xiao-Jie & Zhang, Hao & Wang, Lu & Wei, Yi-Ming, 2014. "Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model," Energy Policy, Elsevier, vol. 65(C), pages 701-707.
    53. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    54. Lan-Cui Liu & Gang Wu & Yue-Jun Zhang, 2015. "Investigating the residential energy consumption behaviors in Beijing: a survey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 243-263, January.
    55. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    56. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO 2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.
    57. Zhaohua Wang & Bin Zhang & Jianhua Yin, 2012. "Determinants of the increased CO 2 emission and adaption strategy in Chinese energy-intensive industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(1), pages 17-30, May.
    58. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    59. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    60. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    61. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.

  4. Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2009. "Carbon price volatility: Evidence from EU ETS," CEEP-BIT Working Papers 4, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Zhu, Bangzhu & Ma, Shujiao & Chevallier, Julien & Wei, Yiming, 2014. "Modelling the dynamics of European carbon futures price: A Zipf analysis," Economic Modelling, Elsevier, vol. 38(C), pages 372-380.
    2. Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
    3. Yifei Hua & Feng Dong, 2019. "China’s Carbon Market Development and Carbon Market Connection: A Literature Review," Energies, MDPI, Open Access Journal, vol. 12(9), pages 1-25, May.
    4. Hintermann, Beat & Peterson, Sonja & Rickels, Wilfried, 2014. "Price and market behavior in Phase II of the EU ETS," Kiel Working Papers 1962, Kiel Institute for the World Economy (IfW).
    5. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    6. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, Open Access Journal, vol. 12(23), pages 1-18, November.
    7. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    8. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    9. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    10. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    11. Fan, Xinghua & Lv, Xiangxiang & Yin, Jiuli & Tian, Lixin & Liang, Jiaochen, 2019. "Multifractality and market efficiency of carbon emission trading market: Analysis using the multifractal detrended fluctuation technique," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Cummins, Mark, 2013. "EU ETS market interactions: The case for multiple hypothesis testing approaches," Applied Energy, Elsevier, vol. 111(C), pages 701-709.
    13. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    14. Fan, Xinghua & Li, Shasha & Tian, Lixin, 2016. "Complexity of carbon market from multi-scale entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 79-85.
    15. Zhao, Xin-gang & Wu, Lei & Li, Ang, 2017. "Research on the efficiency of carbon trading market in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1-8.
    16. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    17. Chaton, Corinne & Creti, Anna & Peluchon, Benoît, 2015. "Banking and back-loading emission permits," Energy Policy, Elsevier, vol. 82(C), pages 332-341.
    18. Tsai, Ming-Tang & Yen, Chih-Wei, 2011. "The influence of carbon dioxide trading scheme on economic dispatch of generators," Applied Energy, Elsevier, vol. 88(12), pages 4811-4816.
    19. Bao-jun Tang & Cheng Shen & Yi-fan Zhao, 2015. "Market risk in carbon market: an empirical analysis of the EUA and sCER," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 333-346, February.
    20. Chang-Jing Ji & Xiao-Yi Li & Yu-Jie Hu & Xiang-Yu Wang & Bao-Jun Tang, 2019. "Research on carbon price in emissions trading scheme: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1381-1396, December.
    21. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    22. Bangzhu Zhu, 2012. "A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network," Energies, MDPI, Open Access Journal, vol. 5(2), pages 1-16, February.
    23. Jiang, M. & Liang, X. & Reiner, D. & Lin, B., 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Cambridge Working Papers in Economics 1811, Faculty of Economics, University of Cambridge.
    24. Carlo Mari, 2018. "CO 2 Price Volatility Effects on Optimal Power System Portfolios," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-18, July.
    25. Rita Sousa & Luís Francisco Aguiar-Conraria & Maria Joana Soares, 2014. "Carbon and Energy Prices: Surfing the Wavelets of California," NIPE Working Papers 19/2014, NIPE - Universidade do Minho.
    26. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2014. "Carbon price analysis using empirical mode decomposition," Working Papers 2014-156, Department of Research, Ipag Business School.
    27. Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
    28. Li, Guangyao & Yang, Jin & Chen, Dingjiang & Hu, Shanying, 2017. "Impacts of the coming emission trading scheme on China’s coal-to-materials industry in 2020," Applied Energy, Elsevier, vol. 195(C), pages 837-849.
    29. Zhi-Fu Mi & Yue-Jun Zhang, 2010. "Estimating the 'value at risk' of EUA futures prices based on the extreme value theory," CEEP-BIT Working Papers 9, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    30. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    31. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    32. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    33. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    34. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    35. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "The EU Emission Trading Scheme: sectoral allocation and factors determining emission changes," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(1), pages 1-14, March.
    36. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2013. "Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities," Applied Energy, Elsevier, vol. 101(C), pages 363-375.
    37. Palao, Fernando & Pardo, Angel, 2012. "Assessing price clustering in European Carbon Markets," Applied Energy, Elsevier, vol. 92(C), pages 51-56.
    38. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    39. Song, Xiangnan & Lu, Yujie & Shen, Liyin & Shi, Xunpeng, 2018. "Will China's building sector participate in emission trading system? Insights from modelling an owner's optimal carbon reduction strategies," Energy Policy, Elsevier, vol. 118(C), pages 232-244.
    40. Yue-Jun Zhang, 2016. "Research on carbon emission trading mechanisms: current status and future possibilities," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(1/2), pages 89-107.
    41. Carlo Lucheroni & Carlo Mari, 2018. "Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach," Energies, MDPI, Open Access Journal, vol. 11(3), pages 1-21, March.
    42. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    43. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    44. Carmichael, David G. & Ballouz, Joseph J. & Balatbat, Maria C.A., 2015. "Improving the attractiveness of CDM projects through allowing and incorporating options," Energy Policy, Elsevier, vol. 86(C), pages 784-791.
    45. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    46. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl & Thomas Schinko & Andreas Türk, 2011. "ETCLIP – The Challenge of the European Carbon Market: Emission Trading, Carbon Leakage and Instruments to Stabilise the CO2 Price. Price Volatility in Carbon Markets: Why it Matters and How it Can be ," WIFO Working Papers 409, WIFO.
    47. Getachew Nigatu, 2016. "Assessing the effects of climate change policy on the volatility of carbon prices in reference to the Great Recession," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(2), pages 200-215, July.
    48. Crossland, Jarrod & Li, Bin & Roca, Eduardo, 2013. "Is the European Union Emissions Trading Scheme (EU ETS) informationally efficient? Evidence from momentum-based trading strategies," Applied Energy, Elsevier, vol. 109(C), pages 10-23.

Articles

  1. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    See citations under working paper version above.
  2. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    See citations under working paper version above.
  3. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    See citations under working paper version above.
  4. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2011. "How does carbon price change? Evidences from EU ETS," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 132-144.
    See citations under working paper version above.Sorry, no citations of articles recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Zhen-Hua Feng should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.