IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v41y2018i4p88-95.html
   My bibliography  Save this article

Low Cost Soft Robotic Grippers For Reliable Grasping

Author

Listed:
  • Amir Souhail

    (Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkla, 90110, Thailand.)

  • Passakorn vassakosol

    (Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkla, 90110, Thailand.)

Abstract

Soft robotic gripper shows valuable role in those tasks where robotic gripper met delicate objects. Comparison with rigid grippers, soft robotic gripper can grip/manipulate variety of target objects. This paper presents soft robotic actuators fabricated with three different low-cost silicones. These robotic actuators show fast actuation at low operating pressure. Three soft robotic grippers were assembled and tested through different tests to compare their performance. Different objects were chosen to test the grasping ability of gripper. Grippers shows the ability to grasp objects from 80.99 g to 4.07g at 30-13 kPa. Results shows that robotic gripper assembled with RTV 225 and RTV 4503 silicone shows the more reliable gripping as compared to Elastosil M4600 silicone. This work shows that these low cost and fast actuation of low-pressure grippers have great potential application in food industry, fruits industry and in daily life.

Suggested Citation

  • Amir Souhail & Passakorn vassakosol, 2018. "Low Cost Soft Robotic Grippers For Reliable Grasping," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(4), pages 88-95, November.
  • Handle: RePEc:zib:zjmerd:v:41:y:2018:i:4:p:88-95
    DOI: 10.26480/jmerd.04.2018.88.95
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3420/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.04.2018.88.95?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:zib:zjmerd:4jmerd2018-88-95 is not listed on IDEAS
    2. Daniela Rus & Michael T. Tolley, 2015. "Design, fabrication and control of soft robots," Nature, Nature, vol. 521(7553), pages 467-475, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jiang, Dongyue & Xu, Minyi & Dong, Ming & Guo, Fei & Liu, Xiaohua & Chen, Guijun & Wang, Zhong Lin, 2019. "Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Hanqi Zhao & Jian Wang & Yang Liu & Zhifan Chen & Jingqi Wang & Lin Chen, 2024. "Quality and Testing of Red Pepper Soft Picking Manipulator Based on RD-DEM Coupling," Agriculture, MDPI, vol. 14(8), pages 1-18, August.
    5. Haoqing Yang & Tengxiao Liu & Lihua Jin & Yu Huang & Xiangfeng Duan & Hongtao Sun, 2024. "Tailoring smart hydrogels through manipulation of heterogeneous subdomains," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Fangming Li & Shuowen Sun & Xingfu Wan & Minzheng Sun & Steven L. Zhang & Minyi Xu, 2025. "A self-powered soft triboelectric-electrohydrodynamic pump," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    8. Jean Chenevier & David González & J Vicente Aguado & Francisco Chinesta & Elías Cueto, 2018. "Reduced-order modeling of soft robots," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-15, February.
    9. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Gyeongji Kang & Young-Joo Kim & Sung-Jin Lee & Se Kwon Kim & Dae-Young Lee & Kahye Song, 2023. "Grasping through dynamic weaving with entangled closed loops," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Toru Ube & Shota Sasaki & Kenji Katayama & Hikaru Sotome & Hiroshi Miyasaka & Ryota Mizutani & Kenji Kamada & Tomiki Ikeda, 2024. "Spatially selective actuation of liquid-crystalline polymer films through two-photon absorption processes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Ningbin Zhang & Jieji Ren & Yueshi Dong & Xinyu Yang & Rong Bian & Jinhao Li & Guoying Gu & Xiangyang Zhu, 2025. "Soft robotic hand with tactile palm-finger coordination," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Chin Leong Lim, 2020. "Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming," IJERPH, MDPI, vol. 17(21), pages 1-34, October.
    15. Changchun Wu & Hao Liu & Senyuan Lin & James Lam & Ning Xi & Yonghua Chen, 2025. "Shape morphing of soft robotics by pneumatic torsion strip braiding," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Donghwan Ji & Jae Min Park & Myeong Seon Oh & Thanh Loc Nguyen & Hyunsu Shin & Jae Seong Kim & Dukjoon Kim & Ho Seok Park & Jaeyun Kim, 2022. "Superstrong, superstiff, and conductive alginate hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. D. Fonseca & P. Neto, 2025. "Electrically-driven phase transition actuators to power soft robot designs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Haitao Yang & Shuo Ding & Jiahao Wang & Shuo Sun & Ruphan Swaminathan & Serene Wen Ling Ng & Xinglong Pan & Ghim Wei Ho, 2024. "Computational design of ultra-robust strain sensors for soft robot perception and autonomy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:41:y:2018:i:4:p:88-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.