IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v30y2019i08ns0129183119500633.html
   My bibliography  Save this article

The average weighted receiving time with weight-dependent walk on a family of double-weighted polymer networks

Author

Listed:
  • Fei Zhang

    (Institute of Orthopaedics, The Third Hospital of Hebei Medical University, ShijiaZhuang, Hebei 050051, P. R. China†Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei 050051, P. R. China)

  • Dandan Ye

    (Institute of Orthopaedics, The Third Hospital of Hebei Medical University, ShijiaZhuang, Hebei 050051, P. R. China†Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei 050051, P. R. China)

  • Changling Han

    (Institute of Orthopaedics, The Third Hospital of Hebei Medical University, ShijiaZhuang, Hebei 050051, P. R. China†Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei 050051, P. R. China)

  • Wei Chen

    (Institute of Orthopaedics, The Third Hospital of Hebei Medical University, ShijiaZhuang, Hebei 050051, P. R. China†Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei 050051, P. R. China)

  • Yingze Zhang

    (Institute of Orthopaedics, The Third Hospital of Hebei Medical University, ShijiaZhuang, Hebei 050051, P. R. China†Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei 050051, P. R. China‡Chinese Academy of Engineering, Beijing 100088, P. R. China)

Abstract

In this paper, a family of the double-weighted polymer networks is introduced depending on the number of copies f and two weight factors w,r. The double-weights represent the selected weights and the consumed weights, respectively. Denote by wijS the selected weight connecting the nodes i and j, and denote by wijC the consumed weight connecting the nodes i and j. Let wijS be related to the weight factor w, and let wijC be related to the weight factors r. Assuming that the walker, at each step, starting from its current node, moves to any of its neighbors with probability proportional to the selected weight of edge linking them. The weighted time for two adjacency nodes is the consumed weight connecting the two nodes. The average weighted receiving time (AWRT) is defined on the double-weighted polymer networks. Our results show that in large network, the leading behaviors of AWRT for the double-weighted polymer networks follow distinct scalings, with the trapping efficiency associated with the network size Ng, the number of copies f, and two weight factors w,r. We also found that the scalings of the AWRT with weight-dependent walk in double-weighted polymer networks is due to the use of the weight-dependent walk and the weighted time. The dominant reason is the range of each weight factor. To investigate the reason of the scalings, the AWRT for four cases are discussed.

Suggested Citation

  • Fei Zhang & Dandan Ye & Changling Han & Wei Chen & Yingze Zhang, 2019. "The average weighted receiving time with weight-dependent walk on a family of double-weighted polymer networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(08), pages 1-18, August.
  • Handle: RePEc:wsi:ijmpcx:v:30:y:2019:i:08:n:s0129183119500633
    DOI: 10.1142/S0129183119500633
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183119500633
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183119500633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    2. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    3. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    4. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    5. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    6. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    7. G. Ghoshal & M. E.J. Newman, 2007. "Growing distributed networks with arbitrary degree distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 175-184, July.
    8. Chang, Y.F. & Han, S.K. & Wang, X.D., 2018. "The way to uncover community structure with core and diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 111-119.
    9. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    11. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    12. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    13. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    14. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    15. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.
    16. A. Chatterjee, 2009. "Kinetic models for wealth exchange on directed networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(4), pages 593-598, February.
    17. Z.-Q. Jiang & L. Guo & W.-X. Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(3), pages 347-355, June.
    18. D Dylan Johnson Restrepo & Neil F Johnson, 2017. "Unraveling the Collective Dynamics of Complex Adaptive Biomedical Systems," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 8(5), pages 118-132, September.
    19. A. Santiago & J. P. Cárdenas & M. L. Mouronte & V. Feliu & R. M. Benito, 2008. "Modeling The Topology Of Sdh Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(12), pages 1809-1820.
    20. Marc Barthélémy & Michele Campagna & Alessandro Chessa & Andrea De Montis & Alessandro Vespignani, 2005. "Emergent topological and dynamical properties of a real inter-municipal commuting network - perspectives for policy-making and planning," ERSA conference papers ersa05p607, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:30:y:2019:i:08:n:s0129183119500633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.