IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v25y2008i01ns0217595908001596.html
   My bibliography  Save this article

Single Machine Scheduling With Job Delivery To Minimize Makespan

Author

Listed:
  • LINGFA LU

    (Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China)

  • JINJIANG YUAN

    (Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China)

Abstract

In the single machine scheduling problem with job delivery to minimize makespan, jobs are processed on a single machine and delivered by a capacitated vehicle to their respective customers. We first consider the special case with a single customer, that is, all jobs have the same transportation time. Chang and Lee (2004) proved that this case is strongly NP-hard. They also provided a heuristic with the worst-case performance ratio$\frac{5}{3}$, and pointed out that no heuristic can have a worst-case performance ratio less than$\frac{3}{2}$unlessP=NP. In this paper, we provide a new heuristic which has the best possible worst-case performance ratio$\frac{3}{2}$. We also consider an extended version in which the jobs have non-identical transportation times and the transportation time of a delivery batch is defined as the maximum transportation time of the jobs contained in it. We provide a heuristic with the worst-case performance ratio 2 for the extended version, and show that this bound is tight.

Suggested Citation

  • Lingfa Lu & Jinjiang Yuan, 2008. "Single Machine Scheduling With Job Delivery To Minimize Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(01), pages 1-10.
  • Handle: RePEc:wsi:apjorx:v:25:y:2008:i:01:n:s0217595908001596
    DOI: 10.1142/S0217595908001596
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595908001596
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595908001596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Söhnke Maecker & Liji Shen, 2020. "Solving parallel machine problems with delivery times and tardiness objectives," Annals of Operations Research, Springer, vol. 285(1), pages 315-334, February.
    2. Liu, Peihai & Lu, Xiwen, 2016. "Integrated production and job delivery scheduling with an availability constraint," International Journal of Production Economics, Elsevier, vol. 176(C), pages 1-6.
    3. Low, Chinyao & Chang, Chien-Min & Li, Rong-Kwei & Huang, Chia-Ling, 2014. "Coordination of production scheduling and delivery problems with heterogeneous fleet," International Journal of Production Economics, Elsevier, vol. 153(C), pages 139-148.
    4. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    5. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    6. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
    7. Jianming Dong & Xueshi Wang & Jueliang Hu & Guohui Lin, 2018. "Single machine scheduling with job delivery to multiple customers," Journal of Scheduling, Springer, vol. 21(3), pages 337-348, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:25:y:2008:i:01:n:s0217595908001596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.