IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i7p1129-1138.html
   My bibliography  Save this article

Development of a Dose‐Response Model for SARS Coronavirus

Author

Listed:
  • Toru Watanabe
  • Timothy A. Bartrand
  • Mark H. Weir
  • Tatsuo Omura
  • Charles N. Haas

Abstract

In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 × l02) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.

Suggested Citation

  • Toru Watanabe & Timothy A. Bartrand & Mark H. Weir & Tatsuo Omura & Charles N. Haas, 2010. "Development of a Dose‐Response Model for SARS Coronavirus," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1129-1138, July.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:7:p:1129-1138
    DOI: 10.1111/j.1539-6924.2010.01427.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01427.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01427.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. W. Armstrong & C. N. Haas, 2007. "A Quantitative Microbial Risk Assessment Model for Legionnaires' Disease: Animal Model Selection and Dose‐Response Modeling," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1581-1596, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Han & Sang, Tong & Kong, Xiangfei & Zheng, Wandong & Wang, Zhaoying & Li, Jinchao & Wang, Leilei, 2023. "Performance analysis of interactive cascade ventilation combined with solar energy for the epidemic prevention and control," Applied Energy, Elsevier, vol. 349(C).
    2. Umesh Adhikari & Alexandre Chabrelie & Mark Weir & Kevin Boehnke & Erica McKenzie & Luisa Ikner & Meng Wang & Qing Wang & Kyana Young & Charles N. Haas & Joan Rose & Jade Mitchell, 2019. "A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS‐CoV) in a Hospital Setting Through Bioaerosols," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2608-2624, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agung Kusumawardhana & Ljiljana Zlatanovic & Arne Bosch & Jan Peter van der Hoek, 2021. "Microbiological Health Risk Assessment of Water Conservation Strategies: A Case Study in Amsterdam," IJERPH, MDPI, vol. 18(5), pages 1-17, March.
    2. Gin Nam Sze‐To & Christopher Y. H. Chao, 2011. "Use of Risk Assessment and Likelihood Estimation to Analyze Spatial Distribution Pattern of Respiratory Infection Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 351-369, March.
    3. Bidya Prasad & Kerry A. Hamilton & Charles N. Haas, 2017. "Incorporating Time‐Dose‐Response into Legionella Outbreak Models," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 291-304, February.
    4. Richard Bentham & Harriet Whiley, 2018. "Quantitative Microbial Risk Assessment and Opportunist Waterborne Infections–Are There Too Many Gaps to Fill?," IJERPH, MDPI, vol. 15(6), pages 1-11, June.
    5. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    6. Steven Dyke & Iain Barrass & Kevin Pollock & Ian M Hall, 2019. "Dispersion of Legionella bacteria in atmosphere: A practical source location estimation method," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-14, November.
    7. Christopher Leleu & Jean Menotti & Pascale Meneceur & Firas Choukri & Annie Sulahian & Yves Jean‐François Garin & Jean‐Baptiste Denis & Francis Derouin, 2013. "Bayesian Development of a Dose‐Response Model for Aspergillus fumigatus and Invasive Aspergillosis," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1441-1453, August.
    8. Ileana Federigi & Osvalda De Giglio & Giusy Diella & Francesco Triggiano & Francesca Apollonio & Marilena D’Ambrosio & Lorenzo Cioni & Marco Verani & Maria Teresa Montagna & Annalaura Carducci, 2022. "Quantitative Microbial Risk Assessment Applied to Legionella Contamination on Long-Distance Public Transport," IJERPH, MDPI, vol. 19(4), pages 1-12, February.
    9. Sarah C. Taft & Stephanie A. Hines, 2012. "Benchmark Dose Analysis for Bacillus anthracis Inhalation Exposures in the Nonhuman Primate," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1750-1768, October.
    10. Martijn Bouwknegt & Jack F. Schijven & Johanna A.C. Schalk & Ana Maria de Roda Husman, 2013. "Quantitative Risk Estimation for a Legionella pneumophila Infection Due to Whirlpool Use," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1228-1236, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:7:p:1129-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.