IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i5p1255-1263.html
   My bibliography  Save this article

Predicting Severity of Foreign Body Injuries in Children in Upper Airways: An Approach Based on Regression Trees

Author

Listed:
  • Paola Berchialla
  • Silvia Snidero
  • Alexandru Stancu
  • Cecilia Scarinzi
  • Roberto Corradetti
  • Dario Gregori
  • the ESFBI Study Group

Abstract

The entry of a small item into the upper airways is one of the leading causes of injuries in children up to 14 years old. The aim of this study is to characterize types of objects causing choking along with the features of the children involved in the accident and compare results with current standards. The European Survey on Foreign Bodies Injuries Study (ESFBI) collected data on foreign body injuries from 19 European countries. The data from ESFBI were selected according to the ICD‐9‐CM codes 933 (foreign body in the pharynx and larynx) and 934 (foreign body in the trachea, bronchi, and lungs). Both a classification tree and a linear discriminant analysis (LDA) have been set up to predict the probability that an injured child experiences a hospitalization. The classification tree provides flowchart‐type decision rules and allows for analyzing the impact of the item features, the children characteristics, and the circumstances of the accidents on the severity of the foreign body injuries. Results showed that children younger than 3.5 who are involved in an accident have a high probability to experience a hospitalization.

Suggested Citation

  • Paola Berchialla & Silvia Snidero & Alexandru Stancu & Cecilia Scarinzi & Roberto Corradetti & Dario Gregori & the ESFBI Study Group, 2007. "Predicting Severity of Foreign Body Injuries in Children in Upper Airways: An Approach Based on Regression Trees," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1255-1263, October.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:5:p:1255-1263
    DOI: 10.1111/j.1539-6924.2007.00971.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2007.00971.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2007.00971.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara J. McNeil & James A. Hanley, 1984. "Statistical Approaches to the Analysis of Receiver Operating Characteristic (ROC) Curves," Medical Decision Making, , vol. 4(2), pages 137-150, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinxian Weng & Qiang Meng & David Z. W. Wang, 2013. "Tree‐Based Logistic Regression Approach for Work Zone Casualty Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 493-504, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
    2. J Mauricio Calvo-Calle & Iwona Strug & Maria-Dorothea Nastke & Stephen P Baker & Lawrence J Stern, 2007. "Human CD4+ T Cell Epitopes from Vaccinia Virus Induced by Vaccination or Infection," PLOS Pathogens, Public Library of Science, vol. 3(10), pages 1-19, October.
    3. Xiangjin Shen & Shiliang Li & Hiroki Tsurumi, 2013. "Comparison of Parametric and Semi-Parametric Binary Response Models," Departmental Working Papers 201308, Rutgers University, Department of Economics.
    4. James A. Hanley, 1988. "The Robustness of the "Binormal" Assumptions Used in Fitting ROC Curves," Medical Decision Making, , vol. 8(3), pages 197-203, August.
    5. Rémi Baroso & Pauline Sellier & Federica Defendi & Delphine Charignon & Arije Ghannam & Mohammed Habib & Christian Drouet & Bertrand Favier, 2016. "Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-16, September.
    6. Leelambar Singh & Subbarayan Saravanan & J. Jacinth Jennifer & D. Abijith, 2021. "Application of multi-influence factor (MIF) technique for the identification of suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 797-823, October.
    7. Xiangjin Shen & Iskander Karibzhanov & Hiroki Tsurumi & Shiliang Li, 2022. "Comparison of Bayesian and Sample Theory Parametric and Semiparametric Binary Response Models," Staff Working Papers 22-31, Bank of Canada.
    8. Cohen, Jacqueline & Garman, Samuel & Gorr, Wilpen, 2009. "Empirical calibration of time series monitoring methods using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(3), pages 484-497, July.
    9. K. Drakopoulos & R. S. Randhawa, 2021. "Why Perfect Tests May Not Be Worth Waiting For: Information as a Commodity," Management Science, INFORMS, vol. 67(11), pages 6678-6693, November.
    10. Roy M. Poses & Randall D. Cebul & Robert M. Centor, 1988. "Eualuating Physicians' Probabilistic Judgments," Medical Decision Making, , vol. 8(4), pages 233-240, December.
    11. George Laking & Joanne Lord & Alastair Fischer, 2006. "The economics of diagnosis," Health Economics, John Wiley & Sons, Ltd., vol. 15(10), pages 1109-1120, October.
    12. Manuel Franco & Juana-María Vivo, 2021. "Evaluating the Performances of Biomarkers over a Restricted Domain of High Sensitivity," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    13. George A. Diamond, 1987. "ROC Steady," Medical Decision Making, , vol. 7(4), pages 238-243, December.
    14. Rennie, Nicola & Cleophas, Catherine & Sykulski, Adam M. & Dost, Florian, 2021. "Identifying and responding to outlier demand in revenue management," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1015-1030.
    15. Robert J. Panzer & Anthony L. Suchman & Paul F. Griner, 1987. "Workup Bias in Prediction Research," Medical Decision Making, , vol. 7(2), pages 115-119, June.
    16. Mikhail G Dozmorov & Joel M Guthridge & Robert E Hurst & Igor M Dozmorov, 2010. "A Comprehensive and Universal Method for Assessing the Performance of Differential Gene Expression Analyses," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    17. Bing Li & Constantine Gatsonis & Issa J. Dahabreh & Jon A. Steingrimsson, 2023. "Estimating the area under the ROC curve when transporting a prediction model to a target population," Biometrics, The International Biometric Society, vol. 79(3), pages 2382-2393, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:5:p:1255-1263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.