IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v7y2016i2p523-559.html

Pooling data across markets in dynamic Markov games

Author

Listed:
  • Taisuke Otsu
  • Martin Pesendorfer
  • Yuya Takahashi

Abstract

This paper proposes several statistical tests for finite state Markov games to examine whether data from distinct markets can be pooled. We formulate homogeneity tests of (i) the conditional choice and state transition probabilities, (ii) the steady‐state distribution, and (iii) the conditional state distribution given an initial state. The null hypotheses of these homogeneity tests are necessary conditions (or maintained assumptions) for poolability of the data. Thus rejections of these null imply that the data cannot be pooled across markets. Acceptances of these null are considered as supporting evidences for the maintained assumptions of estimation using pooled data. In a Monte Carlo study we find that the test based on the steady‐state distribution performs well and has high power even with small numbers of markets and time periods. We apply the tests to the empirical study of Ryan (2012) that analyzes dynamics of the U.S. Portland cement industry and assess if the data across markets can be pooled.

Suggested Citation

  • Taisuke Otsu & Martin Pesendorfer & Yuya Takahashi, 2016. "Pooling data across markets in dynamic Markov games," Quantitative Economics, Econometric Society, vol. 7(2), pages 523-559, July.
  • Handle: RePEc:wly:quante:v:7:y:2016:i:2:p:523-559
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico A. Bugni & Jackson Bunting & Takuya Ura, 2025. "Testing homogeneity in dynamic discrete games in finite samples," Quantitative Economics, Econometric Society, vol. 16(4), pages 1267-1320, November.
    2. Taisuke Otsu & Martin Pesendorfer & Yuya Sasaki & Yuya Takahashi, 2022. "Estimation Of (Static Or Dynamic) Games Under Equilibrium Multiplicity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1165-1188, August.
    3. Victor Aguirregabiria, 2021. "Identification of firms’ beliefs in structural models of market competition," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(1), pages 5-33, February.
    4. Xiao, Ruli, 2018. "Identification and estimation of incomplete information games with multiple equilibria," Journal of Econometrics, Elsevier, vol. 203(2), pages 328-343.
    5. Komarova, Tatiana & Sanches, Fábio & Silva Junior, Daniel & Srisuma, Sorawoot, 2018. "Joint analysis of the discount factor and payoff parameters in dynamic discrete choice games," LSE Research Online Documents on Economics 86858, London School of Economics and Political Science, LSE Library.
    6. Yingyao Hu & Yi Xin, 2019. "Identi?cation and estimation of dynamic structural models with unobserved choices," CeMMAP working papers CWP35/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Aureo de Paula & Xun Tang, 2020. "Testable Implications of Multiple Equilibria in Discrete Games with Correlated Types," Papers 2012.00787, arXiv.org.
    8. Taisuke Otsu & Martin Pesendorfer, 2021. "Equilibrium multiplicity in dynamic games: testing and estimation," STICERD - Econometrics Paper Series 618, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Ruli Xiao, 2016. "Nonparametric Identification of Dynamic Games with Multiple Equilibria and Unobserved Heterogeneity," CAEPR Working Papers 2016-002, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    10. Taisuke Otsu & Martin Pesendorfer, 2023. "Equilibrium multiplicity in dynamic games: Testing and estimation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 26-42.
    11. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
    12. Luo, Yao & Xiao, Ping & Xiao, Ruli, 2022. "Identification of dynamic games with unobserved heterogeneity and multiple equilibria," Journal of Econometrics, Elsevier, vol. 226(2), pages 343-367.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:7:y:2016:i:2:p:523-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.