IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v35y1988i4p571-583.html
   My bibliography  Save this article

New purification algorithms for linear programming

Author

Listed:
  • K. O. Kortanek
  • Zhu Jishan

Abstract

Two new algorithms are presented for solving linear programs which employ the opposite‐sign property defined for a set of vectors in m space. The first algorithm begins with a strictly positive feasible solution and purifies it to a basic feasible solution having objective function value no less under maximization. If this solution is not optimal, then it is drawn back into the interior with the same objective function value, and a restart begins. The second algorithm can begin with any arbitrary feasible point. If necessary this point is purified to a basic feasible solution by dual‐feasibility–seeking directions. Should dual feasibility be attained, then a duality value interval is available for estimating the unknown objective function value. If at this juncture the working basis is not primal feasible, then further purification steps are taken tending to increase the current objective function value, while simultaneously seeking another dual feasible solution. Both algorithms terminate with an optimal basic solution in a finite number of steps.

Suggested Citation

  • K. O. Kortanek & Zhu Jishan, 1988. "New purification algorithms for linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 571-583, August.
  • Handle: RePEc:wly:navres:v:35:y:1988:i:4:p:571-583
    DOI: 10.1002/1520-6750(198808)35:43.0.CO;2-L
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198808)35:43.0.CO;2-L
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198808)35:43.0.CO;2-L?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kortanek, K. O. & Shi, M., 1987. "Convergence results and numerical experiments on a linear programming hybrid algorithm," European Journal of Operational Research, Elsevier, vol. 32(1), pages 47-61, October.
    2. Hanif D. Sherali, 1987. "Algorithmic insights and a convergence analysis for a Karmarkar‐type of algorithm for linear programming problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 399-416, June.
    3. Robert G. Bland, 1977. "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 103-107, May.
    4. Harvey J. Greenberg, 1986. "An analysis of degeneracy," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(4), pages 635-655, November.
    5. BLAND, Robert G., 1977. "New finite pivoting rules for the simplex method," LIDAM Reprints CORE 315, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erling D. Andersen, 1999. "On Exploiting Problem Structure in a Basis Identification Procedure for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 95-103, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omer, Jérémy & Soumis, François, 2015. "A linear programming decomposition focusing on the span of the nondegenerate columns," European Journal of Operational Research, Elsevier, vol. 245(2), pages 371-383.
    2. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    3. Csizmadia, Zsolt & Illés, Tibor & Nagy, Adrienn, 2012. "The s-monotone index selection rules for pivot algorithms of linear programming," European Journal of Operational Research, Elsevier, vol. 221(3), pages 491-500.
    4. P. M. Dearing & Pietro Belotti & Andrea M. Smith, 2016. "A primal algorithm for the weighted minimum covering ball problem in $$\mathbb {R}^n$$ R n," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 466-492, July.
    5. Filippi, Carlo & Romanin-Jacur, Giorgio, 2002. "Multiparametric demand transportation problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 206-219, June.
    6. Issmail Elhallaoui & Abdelmoutalib Metrane & Guy Desaulniers & François Soumis, 2011. "An Improved Primal Simplex Algorithm for Degenerate Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 569-577, November.
    7. Hanif D. Sherali & Bradley O. Skarpness & Buyong Kim, 1988. "An assumption‐free convergence analysis for a perturbation of the scaling algorithm for linear programs, with application to the L1 estimation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 473-492, October.
    8. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    9. Adrienn Csizmadia & Zsolt Csizmadia & Tibor Illés, 2018. "Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 535-550, September.
    10. Im, Haesol & Wolkowicz, Henry, 2023. "Revisiting degeneracy, strict feasibility, stability, in linear programming," European Journal of Operational Research, Elsevier, vol. 310(2), pages 495-510.
    11. Liu, Yanwu & Tu, Yan & Zhang, Zhongzhen, 2021. "The row pivoting method for linear programming," Omega, Elsevier, vol. 100(C).
    12. Jean Bertrand Gauthier & Jacques Desrosiers & Marco E. Lübbecke, 2016. "Tools for primal degenerate linear programs: IPS, DCA, and PE," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(2), pages 161-204, June.
    13. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    14. Pan, Ping-Qi, 2008. "A largest-distance pivot rule for the simplex algorithm," European Journal of Operational Research, Elsevier, vol. 187(2), pages 393-402, June.
    15. Magnanti, Thomas L. & Orlin, James B., 1953-., 1985. "Parametric linear programming and anti-cycling pivoting rules," Working papers 1730-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Zhang, Shuzhong, 1999. "New variants of finite criss-cross pivot algorithms for linear programming," European Journal of Operational Research, Elsevier, vol. 116(3), pages 607-614, August.
    17. Michael J. Best & Xili Zhang, 2011. "Degeneracy Resolution for Bilinear Utility Functions," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 615-634, September.
    18. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    19. John W. Mamer & Richard D. McBride, 2000. "A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs: An Application to the Linear Multicommodity Flow Problem," Management Science, INFORMS, vol. 46(5), pages 693-709, May.
    20. Osman Ou{g}uz, 2002. "Generalized Column Generation for Linear Programming," Management Science, INFORMS, vol. 48(3), pages 444-452, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:35:y:1988:i:4:p:571-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.