IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v22y1975i3p585-592.html
   My bibliography  Save this article

One machine sequencing to minimize mean flow time with minimum number tardy

Author

Listed:
  • Hamilton Emmons

Abstract

The problem of sequencing n jobs on one machine is considered, under the multiple objective of minimizing mean flow time with the minimum number of tardy jobs. A simple procedure is first proposed to schedule for minimum flow time with a specified subset of jobs on time. This is used in conjunction with Moore's Algorithm in a simple heuristic producing good and often optimal schedules. A branch‐bound algorithm is presented to produce the optimal schedule efficiently with the help of several theorems which eliminate much branching.

Suggested Citation

  • Hamilton Emmons, 1975. "One machine sequencing to minimize mean flow time with minimum number tardy," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(3), pages 585-592, September.
  • Handle: RePEc:wly:navlog:v:22:y:1975:i:3:p:585-592
    DOI: 10.1002/nav.3800220314
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800220314
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800220314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murat Güngör, 2016. "A note on efficient sequences with respect to total flow time and number of tardy jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 346-348, June.
    2. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    3. Ali S. Kiran & Ali Tamer Unal, 1991. "A single‐machine problem with multiple criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 721-727, October.
    4. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    5. Suna Köksalan Kondakci & Meral Azizoglu & Murat Köksalan, 1996. "Note: Bicriteria scheduling for minimizing flow time and maximum tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 929-936, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:22:y:1975:i:3:p:585-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.