IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i5p828-836.html
   My bibliography  Save this article

Diamine based water‐lean CO2 solvent with extra high cyclic capacity and low viscosity

Author

Listed:
  • Yanjie Xu
  • Mengxiang Fang
  • Qi Yang
  • Zhixiang Xia
  • Hai Yu
  • Tao Wang
  • Kexian Chen
  • Graeme Puxty

Abstract

The industrial application of emerging water‐lean solvents to CO2 capture from flue gas is challenged by their high viscosity. In this work, we report a novel water‐lean CO2 solvent which possesses lower viscosity and higher CO2 cyclic capacity than other water‐lean solvents reported in the literature. The new solvent consists of N, N‐dimethyl‐1, 2‐ethanediamine (DMEDA), physical cosolvent N‐methyl‐2‐pyrrolidone (NMP) and up to 15% water (named ENH). We evaluated the effect of the solvent composition on the viscosity, CO2 cyclic capacity and regeneration energy of ENH and compared it with the reference monoethanolamine (MEA) based solvents. It was found that ENH containing 5% H2O (ENH‐5%H2O) with a CO2 loading of 0.767 mol CO2·mol amine–1 had a viscosity of 7.603 mPa·S at 40 ˚C, which was comparable with that of traditional blended amines. Excellent cyclic capacity performance was also observed, with ENH‐5% H2O showing a 140% improvement compared to aqueous MEA. Regeneration energy of ENH‐5% H2O was estimated to be 2.418 GJ·tCO2–1 which is 36% lower than the 30 wt. % aqueous MEA solvent. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Yanjie Xu & Mengxiang Fang & Qi Yang & Zhixiang Xia & Hai Yu & Tao Wang & Kexian Chen & Graeme Puxty, 2021. "Diamine based water‐lean CO2 solvent with extra high cyclic capacity and low viscosity," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 828-836, October.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:5:p:828-836
    DOI: 10.1002/ghg.2114
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2114
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    2. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    3. Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    4. Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
    5. Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
    6. Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
    7. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    8. Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
    9. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    10. Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
    11. Jin, Lijian & Hou, Xueyan & Zhan, Lingxiao & Hou, Dawei & Gu, Lina & Zhang, Daguang & Shen, Jianchong & Zheng, Zhihao & Lv, Chao & Liu, Shaoqing & Yang, Linjun, 2024. "Tuning and optimization of two-phase absorbents (DEEA/AEEA/H2O) with hybrid phase splitter (n-butanol/DEEA) for several properties: Carbon capture, phase separation, physical properties," Energy, Elsevier, vol. 288(C).
    12. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    13. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    14. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    15. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    16. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    17. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    18. Yiyang Dai & Yuwei Peng & Yi Qiu & Huimin Liu, 2019. "Techno-Economic Analysis of a Novel Two-Stage Flashing Process for Acid Gas Removal from Natural Gas," Energies, MDPI, vol. 12(21), pages 1-14, November.
    19. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    20. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:5:p:828-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.